|
No. | Title | Year | Type |
|
003 |
Designing Gabor windows using convex optimization
Nathanael Perraudin, Nicki Hollighaus, Peter L. Sondergaard, Peter Balazs
Elsevier, Applied Mathematics and Computation
Cite this paper
Code
|
2014
|
Article |
|
006 |
Fast Robust PCA on Graphs
Nauman Shahid, Nathanael Perraudin, Vassilis Kalofolias, Pierre Vandergheynst
IEEE Journal of Selected Topics in Signal Processing
Cite this paper
Code
|
2015
|
Article |
|
008 |
Stationary signal processing on graphs
Nathanael Perraudin, Pierre Vandergheynst
IEEE Transactions on Signal Processing
slides
Cite this paper
Code
|
2016
|
Article |
|
009 |
Compressive pca for low-rank matrices on graphs
Nauman Shahid, Nathanael Perraudin, Gilles Puy, Pierre Vandergheynst
IEEE transactions on Signal and Information Processing over Networks
Cite this paper
|
2016
|
Article |
|
010 |
Global and Local Uncertainty Principles for Signals on Graphs
Nathanael Perraudin, Benjamin Ricaud, David Shuman, Pierre Vandergheynst
Cambridge University Press, APSIPA Transactions on Signal and Information Processing
poster
Cite this paper
Code
|
2016
|
Article |
|
016 |
Inpainting of long audio segments with similarity graphs
Nathanael Perraudin, Nicki Hollighaus, Piotr Majdak, Peter Balazs
IEEE/ACM Transactions on Audio, Speech, and Language Processing
Cite this paper
Code
Demo
|
2018
|
Article |
|
017 |
Stationary time-vertex signal processing
Andreas Loukas, Nathanael Perraudin
EURASIP Journal on Advances in Signal Processing
Cite this paper
Reproducible research
Webpage
|
2018
|
Article |
|
018 |
Large Scale Graph Learning from Smooth Signals
Vassilis Kalofolias, Nathanael Perraudin
ICLR 2019, Seventh International Conference on Learning Representations
poster
Cite this paper
|
2018
|
Article |
|
020 |
A Time-Vertex Signal Processing Framework
Francesco Grassi, Andreas Loukas, Nathanael Perraudin, Benjamin Ricaud
IEEE Transactions on Signal Processing
Cite this paper
Reproducible research
Webpage
|
2017
|
Article |
|
021 |
Improving DNN-based music source separation using phase features
Joachim Muth, Stefan Uhlich, Nathanael Perraudin, Thomas Kemp, Fabien Cardinaux, Yuki Mitsufuji
Joint Workshop on Machine Learning for Music at ICML, IJCAI/ECAI and AAMAS, 201
Cite this paper
|
2018
|
Article |
|
023 |
DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications
Nathanael Perraudin, Michaël Defferrard, Tomasz Kacprzak, Raphaël Sgier
Astronomy and Computing, Elsevier
poster
Cite this paper
Code
|
2018
|
Article |
|
024 |
Forecasting Time Series with VARMA Recursions on Graphs
Elvin Isufifi, Andreas Loukas, Nathanael Perraudin, Geert Leus
IEEE Transactions on Signal Processing
Cite this paper
|
2018
|
Article |
|
025 |
A domain agnostic measure for monitoring and evaluating GANs
Paulina Grnarova, Kfir Y. Levy, Aurelien Lucchi, Nathanael Perraudin, Thomas Hofmann, Andreas Krause
Advances in Neural Information Processing Systems (Neurips), 2019
Cite this paper
|
2019
|
Article |
|
026 |
A context encoder for audio inpainting
Andrés Marafioti, Nathanael Perraudin, Nicki Hollighaus, Piotr Majdak
IEEE/ACM Transactions on Audio, Speech, and Language Processin
Cite this paper
Code
Example
|
2018
|
Article |
|
027 |
DeepSphere: a graph-based spherical CNN with approximate equivariance
Michaël Defferrard, Nathanael Perraudin, Tomasz Kacprzak, Raphaël Sgier
Representation Learning on Graphs and Manifolds, ICLR 2019 Workshop
poster
Cite this paper
Code
|
2018
|
Article |
|
028 |
Adversarial Generation of Time-Frequency Features with application in audio synthesis
Andrés Marafioti, Nicki Hollighaus, Nathanael Perraudin, Piotr Majdak
International Conference on Machine Learning (ICML), 2019
Cite this paper
Code
Example
|
2019
|
Article |
|
029 |
Cosmological N-body simulations: a challenge for scalable generative models
Nathanael Perraudin, Ankit Srivastava, Aurelien Lucchi, Tomasz Kacprzak, Thomas Hofmann, Alexandre Réfrégier
Computational Astrophysics and Cosmology
Cite this paper
Code
|
2019
|
Article |
|
030 |
DeepSphere: a graph-based spherical CNN
Michaël Defferrard, Martino Milani, Frédérick Gusset, Nathanael Perraudin
International Conference on Learning Representations (ICLR), 2020
Cite this paper
Code
|
2020
|
Article |
|
031 |
Emulation of cosmological mass maps with conditional generative adversarial networks
Nathanael Perraudin, Sandro Marcon, Aurelien Lucchi, Tomasz Kacprzak
Machine Learning and the Physical Sciences Workshop (Neurips 2019)
Cite this paper
|
2019
|
Article |
|
032 |
GACELA--A generative adversarial context encoder for long audio inpainting
Andrés Marafioti, Nicki Hollighaus, Piotr Majdak, Nathanael Perraudin
In review
Cite this paper
Code
Example
|
2020
|
Article |
|
014 |
Towards stationary time-vertex signal processing
Nathanael Perraudin, Andreas Loukas, Francesco Grassi, Pierre Vandergheynst
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017
Cite this paper
|
2016
|
Conference Paper |
|
001 |
Gabor dual windows using convex optimization
Nathanael Perraudin, Nicki Hollighaus, Peter L. Sondergaard, Peter Balazs
Proceeedings of the 10th International Conference on Sampling theory and Applications (SAMPTA 2013)
Cite this paper
Code
|
2013
|
Conference paper |
|
002 |
A fast Griffin-Lim algorithm
Nathanael Perraudin, Peter L. Sondergaard, Peter Balazs
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
Cite this paper
Code
|
2013
|
Conference paper |
|
007 |
PCA using Graph Total variation
Nauman Shahid, Nathanael Perraudin, Vassilis Kalofolias, Benjamin Ricaud, Pierre Vandergheynst
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Cite this paper
Code
|
2015
|
Conference paper |
|
013 |
Tracking Time-Vertex Propagation using Dynamic Graph Wavelets
Francesco Grassi, Nathanael Perraudin, Benjamin Ricaud
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017
Cite this paper
|
2017
|
Conference paper |
|
015 |
Predicting the evolution of stationary graph signals
Andreas Loukas, Elvin Isufifi, Nathanael Perraudin
51st Asilomar Conference on Signals, Systems, and Computers, 2017
Cite this paper
|
2016
|
Conference paper |
|
004 |
The UNLocBoX: A Matlab convex optimization toolbox using proximal splitting methods
Nathanael Perraudin, David Shuman, Gilles Puy, Pierre Vandergheynst
Cite this paper
Website
|
2013
|
Technical report |
|
005 |
Accelerated filtering on graphs using Lanczos method
Ana Susnjara, Nathanael Perraudin, Daniel Kressner, Pierre Vandergheynst
Cite this paper
Code
|
2015
|
Technical report |
|
011 |
GSPBOX: A toolbox for signal processing on graphs
Nathanael Perraudin, Johan Paratte, David Shuman, Lionel Martin, Vassilis Kalofolias, Pierre Vandergheynst, David K. Hammond
poster
Cite this paper
Website
|
2016
|
Technical report |
|
012 |
Low-Rank Matrices on Graphs: Generalized Recovery & Applications
Nauman Shahid, Nathanael Perraudin, Pierre Vandergheynst
Cite this paper
|
2016
|
Technical report |
|
019 |
Graph-based structures in Data Science: Fundamental limits and applications to Machine Learning
Nathanael Perraudin
Cite this paper
Reproducible research
|
2017
|
Thesis |
|