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Abstract—Graph-based techniques emerged as a choice to deal
with the dimensionality issues in modeling multivariate time
series. However, there is yet no complete understanding of how
the underlying structure could be exploited to ease this task. This
work provides contributions in this direction by considering the
forecasting of a process evolving over a graph. We make use of
the (approximate) time-vertex stationarity assumption, i.e., time-
varying graph signals whose first and second order statistical
moments are invariant over time and correlated to a known
graph topology. The latter is combined with VAR and VARMA
models to tackle the dimensionality issues present in predicting
the temporal evolution of multivariate time series.

We find out that by projecting the data to the graph spectral
domain: (i) the multivariate model estimation reduces to that of
fitting a number of uncorrelated univariate ARMA models and
(i) an optimal low-rank data representation can be exploited
so as to further reduce the estimation costs. In the case that
the multivariate process can be observed at a subset of nodes,
the proposed models extend naturally to Kalman filtering on
graphs allowing for optimal tracking. Numerical experiments
with both synthetic and real data validate the proposed approach
and highlight its benefits over state-of-the-art alternatives.

Index Terms—Maultivariate time series, prediction, forecasting,
graph signal processing, joint stationarity, time-vertex graph
signals, Kalman filter, ARMA models, VARMA models.

I. INTRODUCTION

Forecasting multivariate processes is a central topic in signal
processing [2], [3]. Especially in the high-dimensional setting,
the forecasting of unstructured data is considered a complex
task, both from an estimation and computational perspective
—indeed, most works in this direction stay within the limit
of a few dozen time series. To cope with the dimensionality
challenge, particularly when the number of observations is
smaller than the number of time series, typical solutions
involve factor models [4], [5], shrinkage estimators [6], [7],
and low-rank data representations [3].

Recently, forecasting has been considered for graph-
structured processes, i.e., time-varying signals living on the
nodes of graphs [8]-[12]. Here, given a graph and a set of
time series, the aim is to exploit the underlying structure for
improving the prediction accuracy of the considered model.
The core idea is that the additional information, carried by the
graph, can enhance our ability to make relevant predictions.
The graph basically aids to restrict the degrees of freedom
(DoFs) of the model in a manner faithful to the problem at
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hand. Depending on the scenario, these works exploit different
signal priors w.r.t. the graph to formulate the prediction task.

The first to consider prediction in the graph context is
the work of [8], which used the vector autoregressive (VAR)
recursions to learn the underlying topology and then used
this structure to forecast future values. Their findings rely
on a temporal interpretation of edges. More specifically, it is
assumed that the information requires a unit time step to reach
adjacent nodes. Coupling the duration of graph interactions
and the fixed temporal resolution in such a manner may be
beneficial for graph learning purposes, but negatively affects
forecasting since it ignores hidden correlations between nodes.

Relevant work has also been done in tracking time-varying
signals on graphs'. In the adaptive approaches [9], [10], the
prediction/tracking of time-varying graph signals comes as
a byproduct of the presented adaptive estimation strategies.
Here, the authors exploit a low-rank representation of the sig-
nal, due to the bandlimitedness in the graph spectral domain,
to track slow signal variations over time.

A different approach for network process tracking is fol-
lowed in [11], [12]. Here, a virtual graph extrapolated to
the temporal dimension is considered and the multivariate
time series is treated as a single time-invariant (extended)
graph signal on this larger graph. Then, under priors such
as diffusion or smoothness, the tracking task is rephrased as
an interpolation problem. To ease the excessive computational
burden, gradient descent algorithms [11] or Kalman-based
recursions [12] are invoked.

Almost all the above works treat the time series as the
evolution of a noise-corrupted deterministic process. However,
in many practical situations including opinion blogs, temper-
ature sensor networks, financial markets, or brain networks,
the time series has a strong stochastic component. The latter
requires models able to capture the stochasticity along both the
graph and time dimension and allow the short time prediction
from few training samples. Some earlier contributions have
considered stochasticity in time, see e.g., [8], [10], yet leaving
unexplored the stochasticity along the graph dimension.

This work takes one step further and treats time series as
wide-sense stationary (for short stationary) statistical processes
w.r.t. both the graph and temporal domains. While temporal
stationarity preserves the process statistics w.r.t. translations in
time, the considered joint stationarity hypothesis also preserves
these statistics w.r.t. graph localization. A typical example
comprises temperature measurements in sensor networks. The

IFor the sake of clarity, the reader should distinguish between forecasting
and tracking a time-varying signal. In forecasting, x; is predicted based on
historical data {xo, ..., x¢—1}, while in tracking noisy measurements at time
t are also used.



graph stationarity implies that neighboring sensors yield in
expectation a constant value. The joint stationary, on the
other hand, considers the expected constant value to be also
preserved in consecutive time instances?.

Continuing our prior works [16], [17], we exploit the
(approximate) time-vertex stationarity of graph time series and
extend classical VAR and vector autoregressive moving aver-
age (VARMA) recursions for modeling and predicting time-
varying processes on graphs. Specifically, the contributions of
this work are:

1) We propose VAR and VARMA models for forecasting
time series on graphs. These recursions extend the non-
causal models of [16] to causal ones and generalize the
approach of [8] to (i) VAR recursions that do not impose
a temporal interpretation of the edges, and (i7) VARMA
recursions where the MA part allows to model time series
with a more complete structure.

2) We propose a model fitting method that makes use of
the data structure and stationarity. Specifically, we sepa-
rate the multivariate process into uncorrelated univariate
time series (one per graph frequency), hence tackling
the dimensionality issue present in VARMA modeling.
The latter enables us to use well-established univariate
techniques for estimating the model coefficients from
limited training data. We further introduce an optimal
low-rank data representation, which intrinsically makes
use of the graph to further reduce the computational
overhead of the model estimation.

3) We introduce a sub-graph tracker to estimate the time
series on a subset of nodes. The latter makes use the
prediction at time ¢ along with graph sub-sampled mea-
surements to estimate the attributes on the nodes of inter-
est. We show a direct connection between the proposed
approach and Kalman filtering (KF) on graphs [18] that
allows a direct characterization of the sub-graph tracker
performance.

The paper makes an additional minor contribution. It general-
izes the separable two-dimensional time-vertex ARMA filter
of [17] to a non-separable version and shows that the latter
encompasses other state-of-the-art time-vertex recursions on
graphs as the ones presented in [8], [19] and can be used for
distributed predictors.

To validate the joint stationarity hypothesis and the proposed
models, we consider three scenarios: (i) the Molene weather
data set’; the NOAA U.S. temperature data set [20] (ii) a
dynamic mesh data set containing a walking dog; and (i)
an epidemic spreading scenario over a flight transportation
network. The obtained results corroborate the relevance of
graph VARMA models for forecasting stochastic time series
supported on graphs and show that the proposed approaches
outperform both classical univariate and multivariate ARMA
techniques and state-of-the-art graph-based techniques.

2We remark that although perfect stationarity either in the time or graph
domain is difficult to be observed, several real data sets [13]-[16] have shown
some degree of graph/time stationarity that can be exploited for prediction.
3Data publicly available at https://donneespubliques.

meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz.

Notation. The scalar a; indicates the ith entry of vector a,
and similarly the scalar A;; indicates the (i, j)th entry of
matrix A. When needed these entries will also be denoted as
[a];, or [A];;. AT, A* and A" are respectively the transpose,
the element-wise conjugate, and the Hermitian of A. |al|,
and ||A||, indicate respectively the p-th norm of a and A,
whereas || A||r is the Frobenius norm of matrix A. The trace
of A is denoted as tr(A) and A® B is the Kronecker product
of the matrices A and B. a = diag(A) is the operation that
stores the diagonal elements of A into the vector @, and A =
diag(a) is a diagonal matrix containing the vector a in the
main diagonal. The operation a = vec(A) concatenates the
columns of A in a and vec™!(-) is the inverse operation. The
N x N identity matrix is denoted as Iy, the N x 1 all ones
vector as 1, and the NV x 1 all zeros vector as 0. For a set
S C{1,...,N},|S]is the set cardinality, and Dg is an N x N
diagonal matrix with [Dg];; = 1 if i € S and zero otherwise.
To avoid confusion, we refer to causality in the classical sense
[3], i.e., an event happening at time ¢ is influenced only by
events prior to ¢ independently of the graph dimension. We
will refer to the notion of causality used by [8] as restricted
causality, being a subclass of the former.

Paper organization. Section II contains the background infor-
mation. Section III formulates the prediction problem in the
graph signal processing (GSP) perspective and develops the
optimal predictor. Section IV focuses on the model parameter
design. The subgraph tracker is introduced and analyzed in
Section V. Section VI contains the numerical results and the
paper conclusions are drawn in Section VIL.

II. PRELIMINARIES

This section starts with the fundamentals of graph and
time-vertex signal processing. Then, it proceeds with the two-
dimensional time-vertex ARMA models and the definition of
joint stationarity that will be used in the rest of the paper.

A. Graph Signal Processing

Consider a weighted undirected graph G = (V,&, W),
where V is the set of N nodes (vertices), £ is the edge set,
and Wy is the weighted adjacency matrix with [Wg];; =
[Wglj; > 0if (¢,) € € and zero otherwise. A graph signal is
a mapping from the vertex set to the set of complex numbers,
i.e.,, x : YV — C. For convenience we represent a graph signal
by the vector & = [x1,...,zy]|", where ; is the value related
to node i. The graph Fourier transform (GFT) of x is

GFT{z} = Ugw, (N

where Ug is the unitary eigenvector matrix of the discrete
Laplacian matrix Lg = diag(Wgly) — Wg = UgAgU}.
The diagonal matrix Ag contains the eigenvalues on its main
diagonal, often referred to as the graph frequencies [21]. The
GFT allows filtering on graphs in the graph frequency domain.
The filtered version y of @ with the graph filter h(Lg) €
RYXN corresponds to an element-wise multiplication in the
spectral domain, i.e.,

y = h(Lg)x £ Ugh(Ag)UY x, (2)



with matrix h(Lg) obtained by applying the scalar function
h : [0, Amax] — R on the eigenvalues of Lg. Here, h(Ag)
is diagonal and is referred to as the graph filter frequency
response. See [21]-[23] for more details on GSP and [24]-
[27] for graph filters.

B. Time-Vertex Signal Processing

For a time-varying graph signal =, let X ;.r =
[€1,22,...,27] € RVXT be the N x T matrix that collects
T successive realizations. Let also 1.7 = vec(X;.7) denote
the vectorized form of X.7. From [28], the joint (time-vertex)
Fourier transform (JFT) of Xy.p is

JFT{X 1.1} = USXLTU% 3)

where, once again Ug is the graph Laplacian eigenvector
matrix, while U5 € CT*7" is the complex conjugate of the
discrete Fourier transform (DFT) matrix. Uy can also be
interpreted as the unitary eigenvector matrix of the circulant
time-shift operator Ly = Uy A7 U}

2rr(t — 1)
T

fory=+/—1and ¢t = 1,...,T. In a vectorized form, (3)
becomes JFT{z1.r} = Uz, with Uy = Ur @ Ug being a
unitary matrix.

Similar to the GFT, the JFT allows a joint time-vertex
filtering of x1.r in the joint time-vertex frequency domain.
The latter is given by the eigendecomposition of the extended
Laplacian operator Ly = Iy ® Lg + L+ ® In [28]. The
joint filtered version y;.7 of x1.p with a joint filter A(L ;)
corresponds again to an element-wise multiplication, but now
in the joint frequency representation, i.e.,

AT = e, 4

and w; =

yr1 = h(Ly)zr £ Uz h(Ag, A7) USzrr. (5

Here, h(Ag, A7) is an NT x NT diagonal matrix called
the joint time-vertex frequency response with kth diagonal
element [h(Ag, A7)k = h(Ap,e“t) and k= N(t—1)+n
forn = 1,...,N and t = 1,...,7T. By means of inverse
vectorization, we write Y;.7 = vec !(yj;.r) and the tth
column of Yi.7, vy, is the filtered signal at time ¢.

Time-vertex ARMA filters. An efficient way to (distribu-
tively) implement (5) is by extending the two-dimensional
ARMA filters [17] to the more general form

P LP Q Kq
Yot DD VipLbyrp=>_ > @rgLixi g (6)

p=11=0 q=0 k=0

where P, L,,Q, K, are positive scalars and v p, ¢y , denote
complex coefficients. In computing the filter output y;, recur-
sion (6) considers a linear combination of the current and past
graph signal realizations {xy,...,x;_¢} and of the previous
outputs {y;—1,...,Yt—p}. This temporal shifting of the filter
input-output provides a filtering in the temporal domain. The
graph filtering is provided by shifting each temporal realization
Zi—r (Yyi—,) in the graph dimension using powers of Lg.

To see more formally the two-dimensional filtering effect
of (6), we first apply the DFT and then the GFT on both sides
of (6) to obtain the per time-vertex frequency relation

LY D duphe ™7 | gu(e) =

p=11=0

Q K4

SUS prgNe i, (), (7)

q=0 k=0
where §,, (e!*) (&, (e!*)) is the nth entry of GFT{DFT{y;}}
(GFT{DFT{«;}}). Then, for stable filter coefficients 1/ ,,
i.e., coefficients that abide to

P Lp
14+ Y D pAhe ™™ £0, Yn=1,...,N, (8
p=11=0
(6) implements the two-dimensional time-vertex frequency
response

Q Kq k,—jw
q=0 Zk:o Pl,gAne 1M
P I, o
L2 pm1 2020 YipAe P

It is easy to see that the above frequency response is a
joint time-vertex filter. Similarly to its separable counterpart
[17], recursion (6) considers polynomial shifting in the graph
dimension. Thus, from the locality of Lg [21], and since
L’é:ct_q = Lg(Lé_lmt_q) [24], [26], recursion (6) enjoys
the same distributed implementation as [17].

We conclude this section with the following observation.

h(An, @) =

(€))

Remark 1 (Model generality). Recursion (6) encompasses
some of the state-of-the-art two-dimensional time-vertex mod-
els. Specifically:
o for V1, = Yra, and ¢p 4 = ppby it specializes to the
separable case [17];
e for iy, = 0 Vi, p, it boils down to the two-dimensional
finite impulse response time-vertex filter [19];
o for L, = p, Zszoo oroly = In and g = 0
otherwise, it reduces to the model of [8].

In Section III-B we exploit recursion (6) to model network
processes for the task of prediction. This will allow us to
exploit its polynomial implementation, and thus provide a
distributed predictor.

C. Stationarity on Networks

Stationarity is another useful property that extends to graph
signals [13]-[15] and allows performing graph Wiener filter-
ing/interpolation and spectral estimation. From the analogies
with the concept of stationarity in time signals, graph station-
arity requires that the signal first and second order moments
are preserved along the graph dimension. Limiting ourselves
to zero-mean processes, one way to define graph wide-sense
stationarity (GWSS) is:

Definition 1 (GWSS). A random graph process x is wide-
sense stationary, if and only if its covariance matrix %, =
E[xx"] is diagonalizable by the GFT basis Ug, i.e., X, =
Ugdiag(p,)Ug. The N x 1 vector p, is the GFT of the



autocorrelation function of x and is referred to as the graph
power spectral density.

This condition imposes the invariance of the second order
statistics w.r.t. a translation using the shift operator Lg. That
is, as for time signals the second order moment is invariant to
temporal translations, here, the invariance of the graph signal
statistics should also account for the underlying structure.
Moreover, similar to classical temporal stationarity, a useful
property of GWSS signals is that  can be driven by a graph
filter applied to a zero-mean white noise. The graph filter
h(Ag) should then satisfy |h(Ag)|?= diag(p.).

In analogy with the definition of the JFT, stationarity can
be extended to time-varying graph processes [16]. This new
concept of stationarity requires now that the first and second
order moments are jointly preserved along the graph and
temporal dimension. Limiting ourselves again to zero-mean
processes, joint wide-sense stationarity (JWSS) can be defined
as follows:

Definition 2 (JWSS). A random time-vertex process x1.7 =
vec(X1.7) is called jointly (or time-vertex) wide-sense station-
ary, if and only if its covariance matrix ¥, , = Elx.rz! ;]
is diagonalizable by the JFT basis Uy, ie, X7 =
Ugdiag(p1.7)UY. The NT x 1 vector py.r is the JFT of the
autocorrelation function of the process x1.7 and is referred to
as joint power spectral density (JPSD).

With this definition, one now assumes simultaneously wide-
sense stationarity w.r.t. both the time and vertex domains. This
condition requires now invariance w.r.t. translation using the
joint time-vertex shift operator. Further, for a JWSS time-
vertex process the covariance is now related to a joint filter
h(Ag, Ar). Specifically, 1.7 can be driven by time-vertex
filtering zero-mean white noise, where h(Ag, A7) must now
satisfy |h(Ag, A7)|?= diag(p1.7).

III. MODELING OF NETWORK PROCESSES

This section formulates the problem of modeling the tem-
poral evolution of a JWSS network process. We start with
a joint non-causal model and highlight its implementation
issues. Then, we follow the classical literature of VARMA
recursions [3] to propose joint causal models for graph-time
series. Finally, the optimal MSE predictor is derived.

A. Joint Non-Causal Models on Graphs

A JWSS process x;.7 can be obtained through filtering
of a random white process €. = vec(Ej.7) with a joint
time-vertex filter (5) (recall Definition 2). Specifically, we can
model x1.7 with the joint non-causal model

a(Lg)z1.r = b(Ly)er.r, (10)

where 1.7 is the innovation vector, i.e., a random vector
with zero-mean and identity covariance matrix. The NT' x
NT matrices a(Ly) = Uga(Ag,A7)UY and b(Ly) =
Usb(Ag, A7)UY represent arbitrary joint filters. From (10)
and the statistics of €1.7, the JPSD of x.7 is

pir = diag(|a(Ag, A7) *b(Ag, A7)P) (1D

for an invertible matrix model a(L 7).

Despite its generality, model (10) presents several issues
for the task of prediction. First, its computational complexity
results in a heavy task even for moderate values of N and 7.
Second, (10) is not causal. This is problematic for prediction
where one needs to forecast the future in a timely manner from
the process history. To accomplish these challenges, next we
introduce joint causal models, which ease the computational
costs and model the JWSS graph process in a causal manner.

B. Joint Causal Models on Graphs

In the following, we introduce two models for forecasting
time series on graphs.

Graph-VARMA model. Similar to the multivariate case [3],
a joint causal model on graphs has the form

P Q
x=—Y ap(Lg)@ip+ > by(Lg)erg,  (12)
p=1 q=0

where the N x N matrices a,(Lg) = Ugay(Ag)Uf,
bo(Lg) = Iy, and by(Lg) = Ugby(Ag)UY are graph filters
and €; is a random vector with zero-mean and covariance
matrix ..

Following the convention of time series analysis, we call
the above model a graph-VARMA (G-VARMA) model. Nev-
ertheless, we also refer to it as a joint causal model because
(for sufficiently large P and Q) (12) can describe all causal
JWSS processes.

Remark 2 (G-VARMA complexity). The per-iteration com-
plexity of the G-VARMA model is O((P + Q)N?) amounting
to P + QQ matrix-vector multiplications.

In the sequel, we specialize model (12) with graph filters

ap(Lg) and b,(Lg) that have a polynomial structure over the
graph. With the aim to implement a distributed predictor, we
drop the MA part of (12) and consider graph polynomial-VAR
(GP-VAR) models. The rationale beyond the latter choice is
that a graph polynomial VARMA model leads in practice to
unstable predictors, or in best cases to predictors with larger
MSE than GP-VAR. To some degree, this observation is not
surprising and goes in line with the conclusions in multivariate
modeling [3, Chapter 11], [29, Chapter 2]. Differently, this
behaviour is not consistently observed for model (12) due
to its fitting procedure in the graph Fourier domain (see
Proposition 2 in Section IV-A).
Graph polynomial-VAR model. By exploiting the proposed
joint time-vertex filter (6), we write the matrices a,(Lg) and
by(Lg) as polynomials of the graph Laplacian Lg and get the
GP-VAR model*

P Ly
Ty = — Z Z wl,legwtfp + &t

p=11=0

(13)

which is obtained from (12) by setting a,(Lg) =
S tipLh for p = 1,...,P and Q = 0. Further, note

4We denote the approach of [8] as restricted graph polynomial-VAR (RGP-
VAR) model.



that the order L,, of the polynomials varies based on the time
index.

Model (13) preserves the recursive implementation of (12),
thus it reduces further the computational complexity. The
subsequent remark quantifies this cost.

Remark 3 (GP-VAR complexity). The Laplacian polynomial
form of (13) allows it to be implemented distributively in the
vertex domain with a complexity similar to [17]. By setting
the maximum order of the Laplacian polynomial as L, =
max{L1,...,L,}, the per-iteration complexity of the GP-VAR
model (13) is O(Lyax|E]).

Since in general |£|< N2, the (distributed) per-iteration
computational complexity of the GP-VAR model (13) is much
smaller than that of the G-VARMA model (12). Compared to
the non-causal model (10), if we arrest the recursion after
T iterations, the computational complexity of the GP-VAR
is O(Lmax|E|T), while that of the G-VARMA is O((P +
Q)N2T). Moreover, w.r.t. the RGP-VAR model of [8], (13)
allows the polynomial order in the graph domain L, to
differ for each p and not to be restricted as L, < p. The
latter allows capturing more hidden interactions between nodes
and, therefore, yields better predictors. In Section IV-B, we
will see that this polynomial implementation simplifies the
model design, to that of finding scalar coefficients rather than
matrices as in (12).

C. Optimal predictor

Let X;.r be the output of the more general G-VARMA
model (12). We consider the realizations {x1,...,x;_1} are
observed, and the goal is to estimate x; from these values.
Following the conventional approach [3], the value of x; is
estimated as the conditional expectation

@y = Elzy,—1] £ E[thﬂ?h ce xt—l}}
(14)

P Q
- Z ap(Lg) ®i—p + Z bCI(Lg)E[Etfthfl]a
p=1 q=0

i.e., the expected value of x; given the past realizations
{x1,...,2¢_1}. Similarly, E[e,_4;_1] is the conditional ex-
pectation of &;_, given {x1,...,x;_1}. Note that, since
the past realizations {xi,...,z;—1} follow model (12),
the knowledge of {xi,...,x;_1} allows computing the
value of the specific realizations for the past innovations
{€1,...,€1-1} deterministically as €, g1 = T4_q|t—1 —
ZTy_q for ¢ = 1,...,Q (recall by(Lg) = In). So, we can
rewrite (14) as

P
xp = — Z ap(Lg)@i—p + bo(Lg)E[e]
p=1
Q
+ Z bq(Lg) (wtfq\tfl - :it—q)

qg=1

P Q

= _Z ap(Lg) $t—p+z be(Lg) (mtfq\tfl —iit—q) .
p=1 q=1

5)

where in the last equality we used E[e;] = 0. We refer to &;
as the one-step ahead predictor. The k—step ahead predictor
can be obtained by repeating the above computation & times.

The one-step ahead predictor for the GP-VAR model (13)
can be obtained from (15) by setting a,(Lg) = ZZL:”O Vi pLG
forp=1,..., P and @Q = 0. In the sequel, we show that (15)
yields the optimal decision from an MSE perspective.

D. Mean Square Error Analysis

We now illustrate the impact of the predictor parameters
ap(Lg) and b,(Lg) on the MSE of the one-step ahead
predictor (15).

The main result is summarized in the following proposition.

Proposition 1. Let x; be the output of the joint causal model
(12) and let ap(Lg) and by(Lg) be a given set of model
parameters. Then, the MSE of the one-step ahead predictor
(15) is

MSE =E [||bo(Lg)e:3] = tr (2.), (16)

which corresponds to the smallest achievable MSE.

(The proof is given in the Appendix.)

IV. MODEL FITTING: PARAMETER DESIGN

In this section, we focus on identifying the model pa-
rameters, i.e., the kernel matrices a,(Lg) and b,(Lg) for
the G-VARMA, or the scalars v, for the GP-VAR, that fit
process Xi.p. We start with the more complex G-VARMA
case and introduce a GFT-based decoupling approach to ease
the computational burden. To further reduce the parameter
estimation costs, we introduce a low-rank model which trades
prediction accuracy with computational complexity. Then, we
consider the GP-VAR predictor and show that the scalar
parameters can be estimated from the graph process statistics.
The section is concluded with the notion of joint frequency
smoothing and its application to parameter design.

A. G-VARMA fitting

Given the realizations X .7, the canonical way for estimat-
ing the kernel matrices a,(Lg) and b,(Lg) is by solving

T—1 9
minimize @, — i, ]ay(La), by (L H a7
ap(Lg),bq(Lg)T_%PQ}\ (ay(La), by(Lo)] ||

Problem (17) involves a non-linear system of N x (T —
1 — max{P,Q}) equations with (P + Q)N unknowns whose
computational complexity can become prohibitive even for
moderate values of N and T'. To alleviate these costs, the
following proposition establishes a decoupling approach that
breaks down problem (17) into N uncorrelated (yet not
equivalent) well-studied problems with smaller complexity.

Proposition 2 (Decoupling). Consider the joint causal
model (12)

P Q
Ty = — Z ap(Lg) Te—p + Z bg(Lg) €t—q:
p=1 q=0



and denote with &, ,, = [Ugst]n and &y, = [Ugwt]n the nth
GFT coefficient of €, and x., respectively. Then, the input-
output relation between &, and Iy, is given by the ARMA
recursion

]n,n Et—g,n»

P Q
B = = (A, #pn + 3 [bg
p=1 q=0

(18)

with [bo(Ag)], , =1Vnandn=1,...,N.

(The proof is given in the Appendix.)

Although simple in its derivation, Proposition 2 relates
different aspects of the graph and the time series with the
model fitting. First, it uses the GFT eigenbasis to formulate
(12) in the graph Laplacian eigenspace’®. Second, the model
fitting is performed in the graph frequency domain. Here, the
parameter estimation is split into /N uncorrelated problems
of a smaller complexity involving 7' equations and P + @
unknowns. Despite being non-linear problems, the estimation
for each graph frequency time series results in fitting a uni-
variate temporal ARMA. So, we can use well-studied methods
to solve it, such as the Gauss-Newton approach [30].

Remark 4 (Estimation cost). In our analysis, the eigende-
composition of the graph Laplacian Lg is crucial to estimate
the G-VARMA parameters. Therefore, the proposed frame-
work suits better small to medium-sized graphs, where the
eigenvalue decomposition cost (inherent in joint models), is
overshadowed by that of the model estimation. Nevertheless,
next, we introduce a low-rank model estimation that reduces
the estimation complexity at the expense of fitting accuracy.

Low-rank models. To further reduce the model estimation
cost, we can consider estimating a,(Lg) and b,(Lg) only
from a subset of graph frequencies, say K < N. The latter
incurs considerable savings in terms of estimation complexity
since (7) there is no need to compute the full eigendecompo-
sition of Lg, but only the eigenvectors relative to the chosen
K graph frequencies; and (i4) we only need to fit K < N
temporal ARMA time series to the data. For this purpose, we
use the following definition of low-rank matrix approximation.

Definition 3 (Low-rank approximation). Let S be an index
set of cardinality K = |S|, with indicator matrix Dg. Let
also U be a unitary (rotation) matrix. The {U,S} low-rank
approximation of a matrix Xy.p is

Xys =UDsU"X,.7. (19)

For prediction, which is an online task, the above low-rank
approximation should be done only w.r.t. the graph dimension.
The following theorem provides a constructive way to design
the set S that achieves the optimal low-rank approximation
for a JWSS process.

SRecall that for JWSS graph processes the eigenvectors Ug of Lg coincide
with the eigenvectors of 3.

Theorem 1. Let Xi.7 be a zero-mean JWSS process. The
optimal K-rank approximation of X1.7 is given by

_ 2
{Ug,S8*} = ar%rginE {HX - XU’SHF] st |SI=K

where S* contains the indices of the K largest diagonal
elements of Ug' 3. Ug.

(The proof is given in the Appendix.)

This result suggests that the best rank— K approximation
of X.r is obtained by rotating the JWSS process by the
graph Laplacian eigenvectors. This finding is beneficial since
the first step in the model estimation consists of decoupling
the time series using the GFT. It further allows us to claim
the following:

Corollary 1. Let Ug i denote the N x K matrix containing
the K columns of Ug relative to the K highest eigenvalues of
> Then, Ug x2,Ug K leads to the same result as selecting
the highest K diagonal elements of Ug 3. Ug.

An important outcome of the last two results is that the
full eigendecomposition of Lg is not needed. Indeed, only
the eigenvectors relative to the K largest eigenvalues of 3,
are needed (recall that Ug jointly diagonalizes both Lg and
3:), which can be obtained with a lower cost. Therefore,
the low-rank representation can be combined with the model
estimation, by only modeling the time series for the graph
frequencies in S. In this way, we attain a reduction in the
model estimation cost of N/K allowing the G-VARMA to
cope well with largely-sized graphs. Later in Section VI-D,
we will see that real data enjoy this low-rank representation
with K < N.

B. GP-VAR fitting

The parameter estimation for the GP-VAR model (13)
consists of estimating the scalars 1); ,,. Since this problem has
a lower complexity, we find the v, coefficients by directly
minimizing the prediction MSE

P
2
MSE:E[HthrzlxlfpwtpHJ, 1)
p:

with ¥, = Z{;"O Yy p LY. From |z|3= tr(za") and the
linearity of the trace and the expectation, (21) becomes

p
MSE = tr <Z\Il ]E a:t pa:f]> +tr (ZE A p] \Il;'>

p=1 p=1

+tr (E [zz}']) +tr<z Z U, E [z p x| T )
p1=1p2=1
(22)

Then, since R, (i) = E[x:x:—;] is the autocorrelation of the
process at lag i, the GP-VAR coefficients can be found by
solving the convex problem (20).

From (21)-(20), the graph topology imposes a structure on
the model coefficients. In fact, this, somehow small, modifica-
tion renders the model parameter estimation a computationally



easier task compared to the classical VAR model. Thus,
more robust to cope with larger multivariate dimensions. The
GP-VAR model inherits several benefits from the classical
literature of multivariate VAR analysis [3]. In (20), we rely on
the autocorrelation matrix to estimate the coefficients, which
must be estimated from the training data X .7, i.e., R,(7)
(T—i)~ 1 ZZ;S wT:ct'_H. Differently from [9]-[12] that do not
exploit stationary assumptions, in the GP-VAR model we can
incorporate well-established techniques for estimating R, (7),
such as the shrinkage estimators [7] and the random matrix
theory-based estimator [31] in low-samples regime, or the
Kullback-Leiber divergence [32] and Tyler’s estimator [33] to
deal with heavy tail issues in non-Gaussian scenarios.

Remark 5 (Yule-Walker estimation). An alternative to (20) for
estimating )y  is to follow a Yule-Walker approach [34]. That
is, minimize in a least squares sense the function f(i;,) =
R.(0)+ X0 W, R, (p) with @, = /7 U, L. Besides
being a computationally lighter problem to solve, the Yule-
Walker strategy can be combined with the approach in [35]
and, thus, estimate the 1, ,, from subsampled measurements.

C. Spectral Smoothing

We can further improve the model fitting by using the
spectral smoothing heuristic [16, Section IV. B]. This in-
volves the convolution of the JPSD with a smoothly decaying
windowed function in the spectral domain. Specifically, if
Py.;7 = |JFT{X1.7}|? is the JPSD in matrix form, we fit
the models to the process having a final JPSD

[pl;ﬂ,\,eﬂw :Z 9g(A=Xn)gr (€7 —e )2 [Py, cmsen

ns
n,t

(23)

where gg and g7 are smoothly decaying functions in the graph
and temporal and frequency domains, respectively. gg and g1
are scaled Gaussian functions centered at zero and normalized
to sum to one. The Gaussian width is a free parameter that
controls the estimator’s bias-variance trade-off [16].

The idea of spectral smoothing is common in time series
analysis. In fact, for stationary time series, spectral smoothing
(i.e., the convolution with g7 along each node) is a technique
encountered in the literature (see [36], [37]). For stationary
graph signals, spectral smoothing w.r.t. the graph Fourier
domain (i.e., the convolution with gg along each t) is used
to better estimate stationary graph signals [15], [38]. This
heuristic also relates to the spectral leakage phenomenon in
eigenvalue estimation [39], exploiting the locality of spectral
leaking to better estimate the eigenvalues of the covariance

observed nodes

Fig. 1: Nlustration of the sampling set and its complementary
set. The black nodes are observed at time ¢, while the white
nodes are not accessed. At previous time instants, all nodes
are observed.

With respect to this work, (23) relates the joint stationarity
of the signal with the challenge of estimating the model
parameters in a low sample regime. This heuristic exploits
the fact that the signal JPSD is likely to have similar values in
adjacent frequencies and that abrupt changes are more likely to
occur due to noise and finite sample estimation inaccuracies.
Therefore, by exploiting the latter, a model fitting to data with
a JPSD as in (23) will often lead to a lower estimation error.

V. TRACKING ON A SUBSET OF NODES

This section looks at estimating x; by using both the
historical data and measurements at time ¢ collected on a
subset S; C V of nodes. In what follows, we consider the G-
VARMA model to address this task. At the end of this section,
we remark how the tracking can be addressed by other models.

A possible application involving this scenario comprises a
survey outcome in a social network. Here, it is likely that a
(possibly significant) number of users do not take part in the
survey after a certain time instant. By using the developed
predictors and the observations on S;, we are interested to
estimate the survey outcome at time ¢ on another set S;. The
set S; might then be: (i) S; =V, i.e., improve the estimation
on all nodes; (ii) S; = V\S;, i.e., the complementary set of
Sy; or (9i4) a combination on the two. Fig. 1 illustrates one
such example.

Let D; € {0,1}!S!*N be a binary matrix containing the
non-zero rows of Dgs, = diag(1s,). Note that by construction
DtDtT =1 s, and DtT D; = Dg,. Similarly, let D, be the
|S¢|x N binary matrix relative to the set S;. Let also z;
D, (x; + w;) be the |S¢|x1 vector of measurements at time
t with w; the zero-mean measurement noise with covariance
matrix 3, independent from e;. Then, for x; following the
G-VARMA model (12), we have

matrix from few samples. z; = Diey + Dyxy + Dywy, 24)
P P P P
minimize  tr (RI(O) +Y W,R.(p)+ > R.(p)¥+ > > ¥, Ru(pr—p1 )\I';'2>
upd p=1 p=1 p1=1p2=1 (20)

L

P
subject to W, = Zwl»Png‘
1=0



with &; from (15). The linear minimum mean square estimate
(LMMSE) for g; is

& =X.D/H; ' (2, — Di&,), (25)

where H; = Dy (2. + X,) D_tT [40]. Substituting €, into the
signal evolution over the set S;, we get

&5, =Dy (a?;t +S.DH (2 — Dta?:t)). (26)
This is the estimate of x; on S; which considers the G-
VARMA prediction ; and the measurements collected over
S;. Estimator (26) considers, in addition to its past realizations,
i.e., D&, an inverse filtering on the observed vertices and
then a spreading onto the set S;.

Following the KF convention [41], 5, in (26) is the a
posteriori estimate of x; on the set of interest S, and &, is
the a priori estimate of x;. The latter allows then to easily
quantify in closed form the MSE of estimator (26). In fact,
given the a priori error covariance matrix over V, P, =X,
and the a posteriori error covariance matrix over Sy

P}, =D,(Iy - K.D)P; D/, 27)
with Kalman gain matrix
K,=P D/H ', (28)
the MSE of (26) is
MSE = E{ng,t — D,z |)2
(29)

- tr(Dt(IN - EEDjHﬂDt)EEDI),

with H; defined in (25).

The MSE (29) shows the dependence of the reconstruction
performance on the sampling set (through D;) and the G-
VARMA model (through the residual error X.). To select the
sampling set S;, we can exploit the above KF reformulation
of (26) and use the sparse-sensing sampling strategies [42]
adopted in [18] for tracking diffusion processes on graphs.
However, as found in the latter work, the MSE would improve
by 1dB-2dB w.r.t. a random uniform sampling. While the latter
can be used (at the expense of a higher complexity), in this
work we show the potential of the proposed tracker by building
S; uniformly at random.

Remark 6 (Other models). As the KF interpretation high-
lighted, estimator (26) uses P,” = 3. of G-VARMA to connect
the prediction step with the tracking from z;. Therefore, if
we are interested to use another predictive model, the shown
KF reformulation can be adopted to incorporate the a priori
predictor of x; into the measurements z;. For the GP-VAR,
Sor instance, the P, can be derived from (22).

VI. NUMERICAL RESULTS

This section tests the proposed models in four different
scenarios: the Molene weather data set, the NOAA U. S.
temperature data set, a walking dog dynamic mesh, and a
simulated susceptible-infected (SI) epidemic spreading over
a flight network.

Out-of-

In-sample data Sample data

Cross-
validation
data

Training data Test data

Fig. 2: Model fitting process [43].

The predictors in Section III-B are compared with: (i) the
disjoint univariate ARMA that predicts each time series per
node; (i¢) the standard VAR [3]; (i#) the RGP-VAR from
[8]; (iv) the LMS on graphs algorithm from [9]; and (v) the
RLS on graphs algorithm from [10]. For the LMS and RLS
on graphs algorithms, we considered samples collected on all
nodes. The tracking performance of the approach introduced
in Section V is compared with the Wiener inpainting [15] (ap-
plied at each time instant) and the kernel Kalman filter (KKF)
[12]. For the KKF, we considered subsampled measurements
only at time ¢.

For all models, we find the respective parameters by cross-
validation, as discussed in [43]. With reference to Fig. 2, the
time series is split along the temporal dimension into two
parts: the in-sample data and the out-of-sample (or testing)
data. The in-sample data are further split into a training and a
validation set. The estimation procedure starts with first fitting
each model with different model parameters (e.g., different
values for P and () in the G-VARMA predictor) to the training
data and measures their performance on the validation set.
Then, the selected parameters are the one that yield the lowest
root normalized MSE (rNMSE) defined as

ZtT:lHét — 6,13
S 05

for some unknowns 6i,...,0,. and respective estimates
él,...,éT. Finally, the model is refitted with the selected
parameters to the entire in-sample data and tested on the out-
of-sample data.

We indicate with o, the Gaussian width used to perform
the spectral smoothing along the graph dimension [cf. (23)]
and with y the regularization parameter that determines a bias-
variance trade-off in finding the ARMA coefficients along the
temporal dimension® [44], [45]. In the simulations, we made
use of the GSP toolbox [46].

rNMSE = (30)

A. Considered scenarios and data pre-processing

In the following, we discuss the four datasets used in
our evaluation and provide details for graph construction and
preprocessing.

Molene data set. The Molene data set contains hourly tem-
perature measurements of N = 32 weather stations near Brest
(France) for T" = 744 hours. We consider a geometric graph
(illustrated in Fig. 3 (a)) built from the node coordinates using
the default nearest neighbor approach of [46]. This graph

SThis is a regularization parameter used by the Matlab function armax.m
that penalizes the £2 norm of the ARMA coefficients.
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Fig. 3: Graph topologies for the considered scenarios. (a) Molene graph. The vertex in red is the one selected to illustrate
the prediction performance. (b) Dog mesh graph. In building the graph, we considered unknown the manifold structure. Thus,
we can see edges connecting nodes in different legs that are close by each-other (in the time step on which the graph was
constructed). (c) Airline connectivity graph. The nodes in blue are in susceptible (S) state, while the random picked node in

red (Mumbai) is in the infected (I) state.

follows a 10—NN construction and the weight of the edge
(i,7) follows the Gaussian kernel

[(Wgli; = exp( — dist(é, j) /dist)

where dist(i, j) is the Euclidean distance between stations 4
and 7 and dist is the average Euclidean distance of all sensors.
The red station is used later on to illustrate the temperature
prediction. The Laplacian matrix Lg is normalized to have a
unitary spectral norm. Before the fitting process, the in-sample
mean is subtracted from the raw data.

NOAA data set. This is another temperature data set and
comprises of hourly temperature recordings at N = 109
stations across the United States in 2010 [20] for a total
of T = 8759 hours. This data set has been used by four
graph-based alternative techniques that we compare with,
respectively the RGP-VAR [8], the LMS and RLS on graphs
[10], and by the KKF [12]. We use the same graph structure as
[10] and [12], which is built following the approach of [8] and
relies on the 7—NN geographical distances. The combinatorial
Laplacian Lg is used to represent the graph connectivity and
the in-sample mean is subtracted from the raw data before
preprocessing.

Walking dog mesh. We start from the 3D coordinates of a
mesh depicting a walking dog [47]. We aim at predicting the
average point position along the three coordinates. The mesh
has N = 251 points (nodes) over 7' = 59 time steps. The
graph follows a 10-NN construction built from the coordinates
at t = 1 and is illustrated in Fig. 3 (b). This mesh is sparser
than the one in [28] (where this data set is used to remove
noise) to reduce the computational time. As a preprocessing
step, we again subtract the in-sample mean from the data and,
as normalization, we divide by the largest absolute value.

SI epidemic diffusion. This scenario considers an epidemic
diffusion following the susceptible-infected model [48] over
N = 100 international airports. The graph, depicted in
Fig. 3 (c), captures the airline connections with edge weights
[Wgli,; = [Wgl;,: = 1 if there is a flight connection between
two airports and zero otherwise. The graph has 3565 edges
and an average degree of 35.4. Lg is normalized to have a

unitary spectral norm and the in-sample mean is subtracted
from the data.

The time-varying process of interest is the daily evolution
of the infection chance of each node (airport). We select an
infection rate of 10~2 and consider a small fixed population
occupying each airport (60 targets). The infected targets are
assumed to return to the susceptible state after 12 days and
the overall epidemic diffusion is analyzed for 7' = 122 days.
In the initial state, all targets at the blue nodes are in the
susceptible-state (S-state), while all targets at the red node are
in the infected-state (I-state).

B. Prediction performance

We first compare the predictive power of the different
algorithms. For all scenarios, the training, cross-validation,
and test data consist respectively of 35%, 15%, and 50%. The
parameter fitting criterion is the average of the TNMSE (30)
over the five-step ahead prediction. The results for the weather
data sets (Molene and NOAA) are shown in Fig. 4, while those
of the waling dog and epidemic diffusion in Fig. 5.

Molene data set. Fig. 4a shows the prediction INMSE up
to five future steps (hours) for all methods. We see that the
proposed G-VARMA and GP-VAR models achieve the best
performance over other approaches, although the error is small
only for predictions of up to three hours. The GP-VAR falls
sightly behind the G-VARMA in terms of accuracy due its
more constrained form (localized graph filters).

Fig. 4b depicts the true out-of-sample signal and the one
and three-steps ahead prediction of the G-VARMA model at
the red sensor in Fig. 3 (a). We see that the one-step ahead
prediction matches well the true signal with a deviation lower
than 0.5 degrees, while the three-steps ahead prediction is
characterized by a larger deviation (up to 3 degrees Celsius).

NOAA data set. Fig. 4c shows the prediction power of the
different algorithms in this scenario. We first remark that the
training of standard VAR crashed continuously due to the high
number of parameters involved. The graph-based techniques
on the other hand, lead to trainable models due to the reduced
number of parameters. These results show that the proposed
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(a) INMSE versus the prediction steps for the different methods. The
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(c) INMSE versus the prediction steps for the different methods. The
used parameters are: [G-VARMA (12) : P = 3, Q = 0, 0, = 0,
v = 0], [GP-VAR: P =3, L, = L = 3, 0, = 0], [ARMA: P = 3,
@ =0, v = 0], [RGP-VAR [8]: P = 2], [LMS on Graphs [9]: B.width
= 40, ums = 1.5], [RLS on Graphs [10]: B.width = 40, BrLs = 0.5].
A zoomed in version of one one-step ahead prediction is provided in

Fig. 11 in the Appendix.
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same node visualized [10].

Fig. 4: Comparison of the predictive power of the different algorithms in the weather datasets. (a)-(b) Molene data set. (c)-(d)
NOAA data set. The results in plots (b) and (d) are w.r.t. the out-of-sample data.

methods exploit better the graph parameterization and yield
the minimum performance.

The disjoint ARMA compares well with the proposed
algorithms and yields values closer to minimum achieved
by the G-VARMA. This is not entirely surprising for two
main reasons. First, the time series present a strong temporal
stationarity which is known to be well exploited by ARMA
models. Second, we fixed the graph as in [10] and [12] for a
direct comparison with these methods. This choice penalizes
the stationarity assumptions. Therefore, we believe that the
performance of the G-VARMA and the GP-VAR can be further
improved by optimizing the graph topology.

As a final remark, note that we used the parameters of
the LMS (urms = 1.5) and RLS (Brrs = 0.5) on graphs
algorithms as fixed’ by [10]. By cross-validation, we found
that the optimal values are ppyvs = 1.75 and fBrrs = 0.05.
These cross-validated values lead to a slightly lower rNMSE,

"This is done to ensure a fair comparison with these methods.

but still significantly worse when compared with the proposed
methods and to the disjoint ARMA.

Fig. 4d shows the one- and the three-steps ahead predictions
at node 25, which is the same used to display the tracking
results of LMS, RLS, and KKF in [10]. We observe that
the one-step ahead prediction matches relatively well the true
signal value, while a bigger error is observed for the three-step
ahead prediction especially closer to the transition points.

Walking dog mesh. The rNMSE vs number of step ahead
results are shown in Fig. 5a. The classic multivariate VAR is
not shown as it yielded unstable predictions (as the number of
time series is large). Incorporating the graph in the predictive
models seems to avoid these issues. In fact, all graph-based
approaches give more stable predictors. Additionally, the RGP-
VAR [8] yields the worst prediction due to fewer DoF. A
comparison with its generalized version, i.e., the GP-VAR,
shows an rNMSE close to the best performance. We note
that the INMSE gap between the proposed methods and other
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Fig. 5: Comparison of the predictive power of the different algorithms in the three scenarios. (a)-(b) Walking dog mesh. (c)-(d)
SI epidemic diffusion. The results in plots (b) and (d) are w.r.t. the out-of-sample data.

graph-based alternatives is larger w.r.t. the Molene data set.
The spectral smoothing plays a role here for the GP-VAR since
the signal evolution (i.e., the point position) is more regular
along the graph dimension than temperature. This is reflected
in a higher value of o,.

Fig. 5b illustrates the true signal evolution along with
its G-VARMA one- and three-step ahead predictions. The
selected node is the one that presents the largest peak-to-peak
variability in the true signal. Compared to the Molene data
set, we note a worse three-step ahead prediction, while the
one-step ahead prediction is still comparable. Fig. 6 further
shows the true dog position in four causal time steps and the
three step ahead G-VARMA prediction. We can observe that
the proposed model matches well the dog position in most of
the nodes. Larger errors are observed around the body parts
that move the most, e.g., legs and tail.

SI epidemic diffusion. The results for this scenario are shown
in Figs. 5c-5d. Similarly to the walking dog mesh, the VAR

model yields unstable results. From the results in Fig. 5c, all
graph-based methods offer a similar INMSE for the one-step
ahead prediction®. The latter highlights the importance of the
underlying topology in building prediction models, since the
univariate ARMA yields a larger INMSE than the proposed
models. For more than one-step ahead predictions, we see
that the proposed approaches exploit better the graph and
keep yielding a smaller INMSE than the adaptive algorithms.
Nevertheless, starting from three-steps ahead, the univariate
ARMA offers a similar INMSE as the proposed methods.
We make the subsequent remarks. First, the rNMSE is
higher in this data set w.r.t. the previous two cases. We attribute
this degradation to the abrupt transitions in the patient recovery
instances (i.e., every 12 days). Second, also in this data set we
see that the G-VARMA does not have coefficients in the MA

8 An exception is the RGP-VAR recursion [8], which offers a worse
performance. However, the focus of this approach is to learn a topology that
facilitates prediction and it might suffer when the fixed graph structure differs
from the learned one.




Fig. 6: Four test time steps of the three step ahead G-VARMA prediction in the walking dog experiment. The red points
correspond to the prediction and the black to the ground-truth. The four time steps are causal with a delay of 2 steps.
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Fig. 7: One-step ahead prediction rNMSE versus the per-
centage of in-sample-data for the different algorithms in the
Molene data set. The RLS on graphs [10] is not shown
here and offers a similar performance as the LMS on graphs
algorithm. Note that the standard VAR could not be trained
for 10% in-sample data.

part. We have found that the value of @) varies depending on
the amount of training data and cross-validation criterion. For
instance, the G-VARMA model with P =1,Q =1, 0, = 0.5,
and v = 0.44 yields a better performance in the test data than
the one shown in Fig. 5c, though in the cross-validation data
its performance is suboptimal. Finally, we have observed that
the chosen models are characterized by a bounded memory
in time. That is, only a few past realizations are useful for
the prediction task. The GP-VAR model shows that there is
a larger graph influence (i.e., information from further nodes)
in the model. Indeed, information from nodes up to four hops
away is exploited in Fig. 5c and in Fig. 4a.

To conclude, Fig. 5d illustrates the evolution of the I-state
on the whole graph and the respective G-VARMA predictions.
The proposed model follows relatively well the I-state evolu-
tion for one-step ahead prediction with an error up to 4%, yet
its performance degrades in the three-step ahead prediction’.
The decreased amplitude (w.r.t the ground truth) is mainly
attributed to a couple outlier nodes where the I-state evolution
is not predicted correctly, and, therefore, influence the overall
result.

C. In-sample data effect

We now analyze the effect of the in-sample data size on
prediction accuracy. For consistency with the earlier results,
we kept the cross-validation data to be 30% of the in-sample

9This may be improved by using other model parameters.
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Fig. 8: Gained speed-up versus the loss in prediction INMSE
for the G-VARMA model estimated using the low-rank repre-
sentation of the process. Both axes are in log scale to improve
the visibility. For the NOAA data set, the maximum rNMSE

loos is 0.13 with a speed-up of 16.

data, whereas the model parameters are selected to minimize
the one-step ahead rNMSE.

Fig. 7 shows the one-step ahead prediction INMSE as a
function of the in-sample data percentage for the Molene data
set. We first highlight that the multivariate VAR [3] is the one
that suffers the most in low in-sample data regimes. For this
model, we see a clear trend of INMSE reduction when more
data are used for estimating the coefficients. All graph-based
methods are more robust to low in-sample data sizes since
they have fewer parameters. The latter along with the spectral
smoothing seems to play a role when the amount of training
data is limited. The slight variation in the -INMSE for more
training data is within the experimental variance. When the
percentage of in-sample data is very small (10%), the GP-
VAR improves upon G-VARMA due to its fewer DoF.

We conclude that the proposed methods make a better use of
the underlying topology and provide a good trade-off between
the model complexity and the amount of training data. As
a final remark, we do not show these results for the other
scenarios since the VAR [3] recursion (which is the one to
compare with) does not lead to stable predictors.

D. Low-rank model effect

We now test the effects of the low-rank G-VARMA coeffi-
cient estimation described in Theorem 1. Under the settings of
Fig. 4, we estimate the models by ignoring different portions
of the process JPSD. We considered nine ignoring percent-
ages log-spaced in the interval [0.74%,5%] and evaluate the
rNMSE loss and the code speed-up. The code running time is
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Fig. 9: TNMSE versus the cardinality of sampling set for
different tracking algorithms in the Molene data set. The used
parameters are: [G-VARMA (12) : P =3, Q =0, 0 = 0,
~ = 0], [Wiener inpainting, w; ~ N (0y, 0.5Iy)], [KKF [12]:

MKKF = 10_7, oxxe = 1.25, bgxr = 0.09].

averaged over 100 iterations and the speed-up achieved using
the low-rank procedure is compared w.r.t. the case where the
entire JPSD is used.

Fig. 8 shows the gained speed-up as a function of the
rNMSE degradation in the one-step ahead prediction. Each
marker corresponds to an increasing data ignorance percent-
age. The obtained results show a trade-off between predic-
tion accuracy and computational time. We see that the most
sensitive scenario to data ignorance is the NOAA data set as
its NMSE loss increases the fastest, while the least sensitive
scenario is the SI epidemic one. This much higher sensitivity
of the NOAA data set is due to the misalignment between
the used graph and the stationarity assumptions. Better results
are expected in this data set with a topology that imposes
a stronger joint stationarity. These observations highlight,
nevertheless, the sparsity in the process JPSD which can be
exploited to ease the model estimation costs.

E. Tracking performance

We here evaluate the tracking performance of the G-
VARMA model on the Molene and NOAA data sets. The
G-VARMA parameters are the same as the one used in
Section VI-B with coefficients estimated following the low-
rank model and ignoring 1.5% of the process JPSD. The noise
power for the Wiener inpainting is cross-validated following
the procedure in Fig. 2 using all the 50% in-sample data. For
the KKF, we cross-validated the different parameters, i.e., the
KKF kernel weight (ugkr), the diffusion coefficient (okkr),
and the edge propagation weight (bxkr) using all the 50% in-
sample data in the Molene data set. Instead, for the NOAA
data set we used the parameters proposed in [12]. During the
training process, 75% of the nodes are sampled uniformly at
random and the considered score is the tracking rINMSE. To
the G-VARMA tracker, a small artificial noise is added to the
out-of-sample data to avoid numerical issues when inverting
H,. In the test phase, we average the INMSE over 100 random
node selections and consider S; = V.

Molene data set. Fig. 9 depicts the average tracking
rNMSE as a function of the size |S;| of the observation
set. The proposed method is seen to improve substantially
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(a) Comparison of the different methods.

Fig. 10: tfNMSE versus the cardinality of sampling set for
different tracking algorithms in the Molene data set. The used
parameters are: [G-VARMA (12) : P = 3, Q = 0, 0, =
0, v = 0], [Wiener inpainting, w; ~ N(0y,0.51y)], [KKF
[12] MKKF = 1077, OKKF = 18, bKKF = 001] A zoomed in
version of the G-VARMA tracking algorithm is provided in
the Appendix.

the accuracy of the G-VARMA predictor and outperforms
the other approaches even with N/4 = 8 collected samples
at time ¢t. Wiener inpainting provides suboptimal predictions
as it does not exploit the historical data. These results show
also the benefits of the G-VARMA predictors over the Wiener
inpainting and the KKF approach.

NOAA data set. The tracking results for the NOAA data
set are shown in Fig. 10a. The latter enforces the behavior
of the different methods observed for the Molene data set.
The Wiener inpainting still offers the worse performance
as it does not explore the temporal dimension. Similarly,
both the G-VARMA prediction and tracking offer a lower
rNMSE than the KKF [12]. The performance of the KKF
can be slightly improved by using cross-validation (validated
parameters pxgr = 107°, oxkr = 1.5, bgxr = 0.15).

In Fig. 12 (see the Appendix), we zoomed in the perfor-
mance of the proposed G-VARMA tracking methods. A larger
cardinality of the sampling set leads to small reduction of
the INMSE. We mainly attribute this minimal improvement to
the mismatch between the data behavior and the G-VARMA
model. Further reduction of the INMSE can be obtained by
selecting the |S;| in a sparse sensing fashion [42] and by
introducing seasonality into the G-VARMA model [49].

VII. CONCLUSION

The purpose of this work was to determine multivariate
models for forecasting the temporal evolution of time series
on graphs. By leveraging the (approximate) joint time-vertex
stationary of the time series, we reduced the DoFs for the
VAR and VARMA models by designing their coefficients in
the graph spectral domain. The latter decomposition allowed
us to fit the model parameters with well-known univariate
techniques by tackling both the computational and stability
issues present in classical VAR and VARMA models. To
further reduce the estimation costs, we proposed an optimal
low-rank representation for the time series. Finally, a sub-



graph tracker was introduced when measurements form a
subset of nodes become available.

The findings clearly indicated that the graph structure plays
a major role in easing the computational complexity of high
dimensional multivariate models. This role is further enhanced
when the amount of training data is limited. Several numerical
experiments showed the benefits of the proposed methods over
the classical multivariate forecasting techniques and other the
state-of-the-art graph-based approaches.

Overall, this work strengthens the idea that practical benefits
could be achieved in the time series forecasting if the under-
lying data connections are exploited. Further work is needed
in two main directions. First, it is important to understand
the implications of the stationary assumption for the task of
prediction. Second, it is useful to analyze the effects of the
graph structure in the prediction accuracy.

APPENDIX
PROOF OF PROPOSITION 1

By substituting the expression of &; (15) and x; (12) into
the the one-step ahead predictor MSE = E [||&; — @, ||3], we
have

Q 2

Z bg(Lg) (Tt—q — ®1—q)

q=1

MSE =E

Q
qu Lg)ei—q
q=0 2

€29

Then, by substituting €,_, = ©;_q — T;—4 in (31) we obtain

MSE = E [||bo(Lg)e:|3] . (32)

which concludes the derivation of (16). The MSE (32) depends
only on the unknown innovation at time ¢, which corresponds
to the smallest achievable MSE for the given set of coefficients
{ap(Lg), by(Lg)}. This concludes the proof. ]

PROOF OF PROPOSITION 2

By regrouping the terms containing x, on the left hand-side
of (12), the nth element rotated by the unitary matrix Ug is

P P
[Ug >, ap(Lg)wt—p‘| = [Z [ap(Ag)],., UngCt—p]

p=0 p=0

P
Z ap(Ag)l,, Tt—pns
(33)

where ao(Lg) = ap(Ag) = Iy Similarly, the n-th element
of the remaining right hand-side of (12) rotated by UE is

Q
[UQHqu(Lg)etq] [Zb n)Ue, q]

q=0 n n

Q
= [ba(Ag)],, Er-gn-
q=0

Then, the claim (18) is obtained by direct substitution of (35)-
(37) into (12). |

(34)

PROOF OF THEOREM 1
Let us define A = U(Iy — Ds)U". Following the
Eckart—Young—Mirsky Theorem [50], [51], the expected ap-
proximation error is
~ 2
E H’XLT—XU’SHF}:EWAXLTiﬂ} —tr(AE[ X0 X1 ] AM),
(35)

Then, from Theorem 2 of [52], where for each time instant ¢,
the graph signal x; is JWSS stationary with covariance ¥, =
Elz,z'] = Ugg?(Ag)UY implying that

T
¥ = E[X1.r XM, ZE Tzl =) %,

t=1

= Uggz(AG)Ug
where ¢?(Ag) = Z g2(Ag) are reordered such that
g(A) > g(ha) > .. ( ~ ). By substituting of 3¢ into
(35) we get

. 2 2
]E{HXLTXUVSHF] —tr(ASgAY) = HE;/EUDSUHE;/QHF

= [l9(Ag) - UDsU"g(Ag)|[;.-

(37

"Setting then B = UDsU", (37) becomes

) N
E [HXLT — XU’SHF:| = Z: l9(\) — [Bliig(\)[?

+Z| Jijg(A

iF#£] i=1

g7 |1 = [Blaf

2
)
F

where in the third step we use the fact that [B];; < 1 and is
exactly 1 at most K times. The last expression shows that the
global minimum is achieved for X'Ug’s* with S containing
the K largest components of g(\). In fact, (a) is independent
on the choice of B, while the last equality holds only for
U = Ug. Any other rotation will lead to a different B thus a
larger error. ]

Mz

@ X .
> > lg)P=E |:HX1:T_XUQ,S*
i=K+1

(38)

ZOOMED IN FIGURES

This section presents the zoomed in versions of Fig. 4c in
Fig. 11 and Fig. 10 in Fig. 12.
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