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SPARSITY OPTIMIZATION PROBLEM FIXED SUPPORT
node degrees ALGORITHM Idea: Fix some edges to 0, learn the rest.

Inputs: signals X, sparsity k » Lower Complexity Cost= 0 (‘g anowedD

Approximate Nearest Neighbours (ANN)
» Structure imposed by application
e.g. geometric constraints
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REGULARIZATION PARAMETERS

A) Change of parameters i- /5 o=/

Proposition 1

W* (Z,a, ) = \/gw* (%Tﬁz, 1, 1) —SW(02,1,1).

Parameter o only changes the scale
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Zij = ||xs — x5

GRAPH LEARNING

PROBLEMS

How to scale it?
Number of edges is quadratic with
the number of nodes.

How to tune the parameters?
Avoid grid search over

aandg.

B) Set 6 from desired sparsity level

Given a set of m vectors Idea: Simplity! Take 1 node:
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min dw' z —log(w' 1)+ 5 |wl]5.

Learn a graph (edge weights)

Graph Laplacian

Assuming they are smooth:
L=D-W

Theorem 2
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By setting 4 In the T oo | range,

%ZW@H%—%HQ = tr (X' LX) is small

word2vec

— = [Daitch et al.] hard
—=[Daitch et al.] soft

w™ has exactly £ non-zero elements.
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