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Abstract
Uncertainty principles such as Heisenberg’s provide limits on the

time-frequency concentration of a signal, and constitute an important
theoretical tool for designing and evaluating linear signal transforms.
Generalizations of such principles to the graph setting can inform dic-
tionary design for graph signals, lead to algorithms for reconstruct-
ing missing information from graph signals via sparse representations,
and yield new graph analysis tools. While previous work has focused
on generalizing notions of spreads of a graph signal in the vertex and
graph spectral domains, our approach is to generalize the methods of
Lieb in order to develop uncertainty principles that provide limits on
the concentration of the analysis coefficients of any graph signal under
a dictionary transform whose atoms are jointly localized in the vertex
and graph spectral domains. One challenge we highlight is that due
to the inhomogeneity of the underlying graph data domain, the local
structure in a single small region of the graph can drastically affect the
uncertainty bounds for signals concentrated in different regions of the
graph, limiting the information provided by global uncertainty princi-
ples. Accordingly, we suggest a new way to incorporate a notion of
locality, and develop local uncertainty principles that bound the con-
centration of the analysis coefficients of each atom of a localized graph
spectral filter frame in terms of quantities that depend on the local struc-
ture of the graph around the center vertex of the given atom. Finally, we
demonstrate how our proposed local uncertainty measures can improve
the random sampling of graph signals.

1 Motivation
Goal
Build an analysis tool able to assess of the struc-
ture of a graph.
• Since graphs are irregular structure, we need

to probe the local structure of a graph
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Figure 1: Concentration of graph Laplacian eigenvectors. We discretize two
different manifolds by sampling uniformly across the x-y plane.

2 Characterization of the concentration
Concentration measure
Inspired by Lieb [4], we use `p-norms

sp(f ) =


‖f‖2
‖f‖p, if 1 ≤ p ≤ 2

‖f‖p
‖f‖2, if 2 < p ≤ ∞

.

p sp(f1) sp(f2) sp(f3) sp(f4)
1.00 0.32 0.46 0.50 1.00
1.33 0.56 0.69 0.71 1.00
2.00 1.00 1.00 1.00 1.00
4.00 0.56 0.75 0.71 1.00
∞ 0.32 0.68 0.50 1.00

Figure 2: The concentration sp(·) of four different example signals (all with
2-norm equal to 1), for various values of p.

3 Definition & notation

• u`, λ` are the eigenvectors and eigenvalues of the
Laplacian L [2]

•Localize a kernel ĝ to center vertex i ∈
{1, 2, . . . , N} by applying:

Tig(n) =
√
N

N−1∑
`=0

ĝ(λ`)u`(i)u`(n)

•A collection of filters D = {gk}k=1,...,K forms a
graph filter frame if there exists A and B such that
for all f ∈ CN [3]:

A‖f‖22 ≤
∑
i,k

|〈f, Tigk〉|2 ≤ B‖f‖22.

• Special case: uniform translates of a a kernel (Ga-
bor filterbank).

•Analysis operator:

ADf (i, k) = 〈f, Tigk〉.

•Ambiguity function (Characterization of the
frame):

Ag(i0, k0, i, k) = AgTi0gk0(i, k) = 〈Ti0gk0, Tigk〉

•Norm of the ambibuity function

‖AgTi0gk0‖p =

(
M∑
k=1

N∑
i=1

|< Tigk, Ti0gk0 >|
p

)1
p

4 Theorems
Theorem 1 (Global uncertainty). Let {Tig}{i∈[1,N ],k∈[0,M−1]}
be a graph filter frame. For any signal f ∈ CN and for any
p ∈ [1,∞], we have

sp(Agf ) ≤
B
min{12,

1
p}

A
max{12,

1
p}

(
max
i,k
‖Tigk‖2

)∣∣∣1−2
p

∣∣∣
. (1)

Local uncertainty
Theorem 2. Let {Tig}{i∈[1,N ],k∈[0,M−1]} be a graph
filter frame. For any i0 ∈ [1, N ], k0 ∈ [0,M − 1]
such that ‖Ti0gk0‖2 > 0, then for p ∈ [1,∞], we
have

sp (AgTi0gk0) ≤
Bmin{1p,1−

1
p}‖Tĩi0,k0gk̃i0,k0‖

|1−2
p|

2

A
1
2

(2)

where k̃i0,k0 = argmaxk ‖Ti0(gk0 ·gk)‖∞, and ĩi0,k0 =
argmaxi

∣∣∣Ti0(gk0 · gk̃i0,k0)(i)∣∣∣.
• i0 selects the node and k0 the frequency band
• ĩi0,k0 is close to i0 if the kernel gk is smooth (true

for Gabor)

• k̃i0,k0 is close to k0 if the kernel is localized (true
for Gabor)

5 Illustration

d = 1 d ≈ 11 d ≈ 17 d = 27 d = 81
f1 =
T1g0

f2 =
T64g0

Figure 3: Graph Gabor transforms of f1 = T1g0 and f2 = T64g0 for 5
different distances between vertices 1 and 2 of the modified path graph (64
vertices). The distance d = 1/W12 is the inverse of the weight of the edge
connecting the first two vertices in the path.

Figure 4: Concentration of the graph Gabor coefficients of f1 = T1g0 and
f2 = T64g0 with respect to the distance between the first two vertices in the
modified path graph, along with the upper bounds on this concentration from
Theorem 1 (global uncertainty) and Theorem 2 (local uncertainty).

6 Illustrative experiment

Probing the information contained in one sam-
ple
•Use the filter ĝ corresponding to the frequency

band of the data

• Probe the uncertainty using a cheap approxima-
tion of our theorem: i0 = ĩ

• Sample inversely proportionally to the uncer-
tainty, i.e: ∝ ‖Tig‖2
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Figure 5: Comparison of random uniform sampling and random non-
uniform sampling according to a distribution based on the local sparsity val-
ues.

7 Conclusion
Main message
The localization operator Tig character-
izes the local graph structure.
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