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Abstract—We present a novel method for the compensation of
long duration data loss in audio signals, in particular music.
The concealment of such signal defects is based on a graph
that encodes signal structure in terms of time-persistent spectral
similarity. A suitable candidate segment for the substitution of
the lost content is proposed by an intuitive optimization scheme
and smoothly inserted into the gap, i.e. the lost or distorted signal
region. Extensive listening tests show that the proposed algorithm
provides highly promising results when applied to a variety of
real-world music signals.

I. INTRODUCTION

The loss or corruption of entire segments of audio data
is a highly important problem in music enhancement and
restoration. Such corruptions can range from short bursts in
the range of few milliseconds to extended distortions that
persist over several hundred or even thousands of milliseconds.
Short distortions such as clicks or clipping have seen extensive
coverage in the literature [1], [2], [3], while the concealment
of moderate length distortions, roughly in the range of 10 to
at most 100 ms, is treated in packet loss compensation [4],
[5] and previous work on audio inpainting [6], [1], [7].
For such corruptions, it is often reasonable to assume that
the lost signal is almost stationary for the duration of the
corruption and/or can be inferred from the reliable information
surrounding the unreliable segment. For longer duration loss,
such an assumption is increasingly unrealistic and a restoration
technique cannot rely only on local information. Here, we
propose a method to compensate for such extended data loss
by considering information from the entirety of uncorrupted
audio available.

Data loss or corruption in the range of seconds can have
various causes, e.g. partially damaged physical media, such
as phonograph cylinders, shellac or vinyl records or even
magnetic tapes. In live music recordings, imperfections due
to unwanted noise sources originating from the audience, the
artists themselves or the environment are quite common. Even
in audio transmission, a short, but total, loss of the connection
between transmitter and receiver may lead to data loss beyond
just a few hundred milliseconds. In each of these scenarios,
the data loss has highly unpleasant consequences for a listener,
and it is usually not feasible to reconstruct the lost content
from local information only.

Previous work on concealment of data loss in audio, though
mostly considering shorter corruption duration, has been per-
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formed under various names, depending on the target appli-
cation and the employed methodology: Audio inpainting [6],
audio interpolation [8], waveform substitution [9], or imputa-
tion [10] to name but a few. We will use the terminology of
audio inpainting in the remainder of this contribution. When
missing parts have a length no longer than 50ms, sparsity-
based techniques can be successful [6], [1], [2]. Otherwise,
techniques relying on auto-regressive modeling [8], sinusoidal
modeling [7], [11] or based on self-content [5] have been
proposed. The latter provided promising results for speech
signals with distortions up to 0.25 seconds, while the former
rely on a simple signal model that does not comply with
complex music signals.

In this contribution, we propose a new algorithm, specifi-
cally targeted at the concealment of long duration distortions in
the range of several seconds given a single piece of music. The
task of determining distortion locations is highly application-
dependent and may be anything from trivial to very difficult.
For the sake of focus, we assume the location of the distortion
to be known. Our method arises from the assumption that,
across many musical genres, the repetition, or variation, of
distinct and recurring patterns (themes, melodies, rhythms,
etc) is a central stylistic element and thus heavily featured.
When listening to music, we detect and memorize such
internal redundancies, thereby learning the mid- and large-
scale structures of a music piece [12]. The exploitation of such
redundancies in the computational analysis and processing of
music seems only natural and, indeed, has been proposed be-
fore, see e.g. [13], [14], [15] or [16]. The latter also provides a
more extensive discussion of repetition as an essential element
of many musical genres. Although music information retrieval
(MIR) provides many sophisticated methods for the analysis of
micro- and macroscopic structures in music, properly handled,
a simple time-frequency analysis can provide all the necessary
information to uncover significant similarities in music signals.
The contributions of this work are the design of appropriate
time-frequency features and their use for generating a map
of similarities in music signals, as well as the use of the
generated similarity map to drive the automatic concealment
of long duration data loss.

A. Related Work

Self-similarity in music has previously been employed in
several areas of music analysis and processing, e.g. beat
estimation and segmentation, and is often based on similarity
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matrices, as proposed by Foote [13]. The similarity matrix
can be constructed from various features, see e.g. [17], [18],
[19], [20]. Self-similarity has also been successfully used for
music/voice separation and speech enhancement [16], [21].
Finally, the automatic analysis of musical structure based on
similarities is already found in [22], where it was used across
songs for cover song detection. An alternate approach can
be found in [14], [15]1. There, the division of music into
short, rhythm-dependent pieces is proposed, each of which
is supposed to correspond to a single beat. Local features are
obtained for each piece by combining previously established
rhythm, timbre and pitch features, but the implementation de-
tails of their method are not disclosed. In this contribution, we
propose a simple time-frequency feature built from the short-
time Fourier magnitude and phase that implicitly encodes
rhythmic, timbral and pitch characteristics of the analyzed
signal all at once. We build a sparse similarity graph based
on this feature that highlights only the strongest connections
in a music piece. This similarity graph can be seen as a post-
processed variant of Foote’s similarity matrix and is used to
perform data loss concealment by detecting suitable transitions
between similar segments in a piece of music.

The audio inpainting problem has mainly been addressed
from a sparsity point of view. The hypothesis is that audio is
often approximately sparse in a time-frequency representation,
i.e. it can be estimated using only a few time-frequency atoms.
Using classical `0 or `1 optimization techniques, algorithms
have been designed to inpaint short audio gaps [6], [1]. Such
methods strive for approximate recovery of the lost data
by sparse approximation in a time-frequency representation
such as the short-time Fourier transform (STFT). Both their
numerical and perceptual restoration quality quickly degrade
when the duration of lost data intervals exceeds 10 ms. When
applied to significantly longer gaps, these methods will simply
fade out/in at the gap border and introduce silence in the inner
gap region. Audio inpainting is known as "waveform substi-
tution" [9] by the community addressing packet loss recovery
techniques [4]. Most packet loss methods, however, are natu-
rally designed for low delay processing and compromise com-
putation speed over quality, see also [5] for a short overview. In
that contribution, Bahat et al. propose an algorithm searching
for similar parts of the signal using time-evolving features,
conceptually resembling our own contribution. The method
in [5] is designed for packet loss concealment in speech
transmission, however, and was tested only on gaps up to 0.25
seconds. The reliance on Mel frequency cepstral coefficients
(MFCC) is a good match for speech, but not optimally suited
for music. In another approach, Martin et al. [23] proposed
an inpainting algorithm taking advantage of the redundancy
in tonal feature sequences of a music piece. Their method
is able to conceal defects with a length of several seconds,
but performance of this algorithm depends on the amount of
repetitive tonal sequences in a music piece [23] and it was
only applied when a recurrence of the lost tonal sequence was

1These studies led to the founding of "The Echo Nest", see http://the.
echonest.com/, a company specialized into audio feature design. The idea of
a similarity graph already appears in the infinite jukebox: http://labs.echonest.
com/Uploader/index.html.

present in the reliable signal. It should be noted that parallel
work on audio inpainting using self-similarity by Manilow and
Pardo [24] has been presented while the present manuscript
was under review.

B. Structure of the paper

After the introduction, we introduce the idea of the similar-
ity graph, Section II. The general method and construction of
the graph is presented in Section III. Technical details about
the graph construction such as the exact choice of features and
parameters are deferred to Section IV. In Section V, we detail
how the similarity graph can be used for audio inpainting.
Finally, the performance of the algorithm is discussed, based
on both a basic verification experiment and though extensive
listening tests, Section VI.

II. A TRANSITION GRAPH ENCODING MUSIC STRUCTURES

The problem we consider, i.e. how to restore a piece of
music when an extended, connected piece has been lost or
corrupted, often requires us to abandon the idea of exact
recovery. In the case where only a short segment (up to about
50ms) has been lost [6], or the signal can be described by
a very simple structure [7], it may be possible to infer the
missing information from the regions directly adjacent to the
distortion with sufficient quality. However, for complex music
signals and corruptions of longer duration, such inference
remains out of reach. Instead, we employ an analysis of the
overarching medium- and large-scale structure of a music
piece, determining redundancies in the signal to be exploited
in the search for a replacement for the distorted signal segment.

Conceptually, such analysis can be seen as a music seg-
mentation into chorus and verse, motifs and their variation,
sections of equal or different meters, etc [25]. The main
difference to our approach is that, instead of working with
high-level cognitive concepts such as meter and motifs, we
instead consider a basic time-frequency representation of the
signal. In that representation, all the structures contained in a
music recording are still preserved, although it is not always
easily accessible to the human observer.

It is clear that repetition and less obvious redundancies do
not occur to an equivalent degree in every music piece. While
they are an essential stylistic element to pop and rock music,
certain movements, e.g. in contemporary music, attempt the
active avoidance of the familiar. But even if a pattern is not
repeated in the exactly same fashion, the conscious variation
of previous structures, rhythmic, harmonic or otherwise, is
an integral part of most music. Note that the grade of self-
similarity inside a single recording may vary greatly.

Going back to the original problem of music restoration, it
seems natural to exploit this type of redundancy in the musical
piece to be restored. The temporal evolution of spectral content
provides a surprisingly suitable first approximation of musical
features. Inspired by this observation, we construct an audio
similarity graph. The vertices of the graph represent small
parts of musical content, while the edges indicate the similarity
between the segments in terms of local spectral content. The
crucial step towards good performance is the enforcement of

http://the.echonest.com/
http://the.echonest.com/
http://labs.echonest.com/Uploader/index.html
http://labs.echonest.com/Uploader/index.html
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temporal coherence. This is achieved by selecting transitions
that persist over time, i.e. similarity is not instantaneous, but
present for some period of time.

III. METHOD

The ultimate goal of this contribution is to provide a means
for autonomous concealment of signal defects with a duration
of a few hundred to several thousand milliseconds. Here, we
assume that the position of the defects is already known.
The restoration should sound natural and respect the overall
structure of the signal under scrutiny. For short distortions, this
implies, to some degree, the recovery of the lost information
in the defective region. For long gaps and dynamic signals,
we argue that it is of much greater importance than the tran-
sitions between the reliable signal segments and the proposed
restoration sound natural. The further away from the transition
points we are into the restored region, the less important exact
recovery becomes versus the restoration making sense in the
signal context. Therefore, we suggest an analysis of the signal
structure with the proposed similarity graph, to determine
the most natural fit for the distorted region from unaffected
portions of the signal. The resulting method is an abstracted
and autonomous version of manual restoration by searching
the reliable signal for a replacement for the defective region.
Since the proposed method forgoes the synthesis of new audio
content and provided that enough reliable signal content is
available, the proposed method can handle signal defects of
arbitrary length without affecting audio quality.

We obtain from a short-time Fourier transform [26], [27],
[28] simple similarity features carrying important temporal and
spectral information. On the basis of these features, a similarity
graph is constructed, representing the temporal evolution and
structure of the signal. If some signal segment is known to be
defective, it is now sufficient to determine another segment of
similar length, such that the beginning and end of the substitute
resemble the signal before and after the defect. By placing the
candidate segment at the previously corrupted position, the
defect can be concealed.

The proposed algorithm, illustrated in Figure 1, searches
for a replacement segment that optimally satisfies the three
following criteria:

1) The transitions T1 and T2 (light green dashed lines) re-
sulting from the pasting operation should be perceptually
transparent, i.e., the listener should not be able to notice
the transition, even if the replacement segment does not
correspond exactly to the missing data.

2) Some leeway is required for placing the transitions
around the gap, represented by L1, L2. However, the
transition areas should not be unnecessarily long.

3) The length of the piece should remain approximately the
same, i.e., the replacement duration D2 should be close
to the gap plus its surroundings, D1.

Some margin for compromise is, however, essential to the
construction of a good solution. Since the question of how
strictly the reliable content is to be preserved, i.e. how long L1

and L2 may be, is highly application-dependent, a parameter
in the optimization scheme enables the tuning of this property.

Figure 1. Illustration of the proposed inpainting method. The determined
candidate segment of duration D2 is to be substituted for the gap. The
optimal transition points T1 and T2 are determined together with the candidate
segment by jointly optimizing (i) the similarity feature at T1, T2, (ii) the
difference |D1−D2| and the length of the necessary transition areas L1 and
L2.

In practice, at least for the inpainting problem, it is un-
necessary to construct the full similarity graph. Consequently,
we construct a sparsified graph which considers unique and
strong matches only. Weak matches are discarded. Only the
strongest from a cluster of (temporally close) matches are
considered. Finally, only edges connected to at least one node
in the vicinity of the gap are relevant, since L1 and L2 are
supposed to be small, see Figure 1.

A. Creation of the similarity graph

The generation of the graph can be structured coarsely
into 4 distinct stages. In this section we disregard some
technical details, instead concentrating on the general idea.
The technical details of the individual steps of our method
can be found in Sections IV and V.

1. Compute basic similarity features. To determine tem-
poral similarities in a signal, we have to settle on a feature
that encodes the local signal behavior and a distance measure
that allows the comparison of feature vectors. For simplicity,
and because the results were comparable to more sophisticated
features, we settle here on a weighted combination of two
features obtained directly from a short-time Fourier (STFT)
analysis of the signal. Let C be the matrix of short-time
Fourier coefficients, with Cm,n denoting the coefficient ob-
tained at the n-th time position in the m-th channel. Cm,n, see
Section IV, can be decomposed uniquely into its magnitude
Mm,n ≥ 0 and phase Φm,n ∈]− π, π] as

Cm,n = Mm,ne
iΦm,n .

Since the human auditory system perceives loudness approx-
imately as a logarithmic function of sound pressure, the first
part of our proposed feature is essentially a time slice of the
dB-spectrogram, i.e.

F̃ 1
n := [20 log10(M0,n), . . . , 20 log10(MM−1,n)].

Note that direct spectrogram features have already proven to
be useful in other applications, e.g. repetition-based source
separation, see [16].
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Additionally, the time-direction partial derivative of the
phase provides an estimate of the local instantaneous fre-
quency [29], [30]. Let Φtd denote the M × N -matrix con-
taining the values of the time direction partial derivative of
the phase, i.e. Φtd

m,n = ∂Φm,·[n]. The second part of our
proposed feature is essentially

F̃ 2
n :=

[
Φtd

0,n, . . . ,Φ
td
M−1,n

]
,

and F̃n = [F̃ 1
n , F̃

2
n ]T . While F̃ 1 puts a strong emphasis on

signal components of high amplitude, F̃ 2 attains large values
for sinusoidal, or slowly frequency-varying, components inde-
pendent of their magnitude, see also Figure 2. This second part
of the feature serves to emphasize low amplitude harmonic
components, which may be highly important for perceived
similarity. The actual feature fn, defined in Section IV, is
conceptually equivalent to F̃n, but implements some additional
scaling. Locality of the features is implied by obtaining the
features from a STFT. The distance between two features at
l, k is simply the squared Euclidean distance of fl and fk.

Figure 2. Local audio features for an exemplary audio signal. The log-
spectrogram F̃1 (top) encodes the time-dependent intensity of frequency
components. The smoothed partial phase derivative F̃2 (bottom) has large
values in the area of stable, harmonic components, independent of the
component magnitude.

2. Create a preliminary similarity graph. The full (un-
processed) similarity graph determined from the given fea-
ture vectors would simply have all the time positions n ∈
{0, . . . , N − 1} as vertices and edges connecting each vertex
to every other vertex, with the associated weights derived from
the distance between the associated features.

The creation of such a graph is not only very expensive, but
we are further only interested in a small number of strongest
connections for every vertex. Therefore, we only determine
the K nearest neighbors, in terms of feature distance. Since
this operation is expensive, we use the FLANN library (Fast
Library for Approximate Nearest Neighbors) [31] to efficiently

provide an approximate solution. For the K determined neigh-
bors, the edge weights are recorded in the adjacency matrix
as

W0(l, k) =

e−
‖fl−fk‖22

σ if k is among the K n.n.s of l
0 otherwise,

(1)
for some σ > 0, following a traditional graph construction

scheme, see also Figure 3 (left).
3. Enhance time-persistent similarities. The individual

features obtained from the STFT usually characterize signal’s
properties on a local time interval and do not capture the
long-term signal’s spectral characteristics. In order to capture
longer temporal structures of a signal, we refine the graph
by emphasizing its edges whenever a sequence of features at
consecutive time positions is similar to another. In practice,
this is achieved by convolving the weight matrix W0 with a
diagonal kernel D ∈ RLK+1×LK+1, for some LK ∈ 2N, with

Dl,l = 1− |LK − 2l|
LK

and Dl,k = 0, if l 6= k.

The resulting adjacency matrix is given as

W(l, k) = (W0 ∗D)(l, k)

=

LK/2∑
l0=−LK/2

(
1−

∣∣∣∣ 2l0
LK

∣∣∣∣)W0(l + l0, k + l0),
(2)

see also Figure 3 (middle). Note that, in order to obtain an
N ×N -matrix W and for the above equation to be valid W0

is implicitly extended to an (N + LK) × (N + LK)-matrix
with LK/2 zeros on any side.

Figure 3. Weight matrix based on feature vectors calculated for an exemplary
audio signal without a gap. Left panel: Preliminary weight matrix, W0, of
the initial graph. Center panel: Convolved weight matrix, W. Right panel:
Excerpt of the weight matrix, Ws, of the sparsified graph.

4. Delete insignificant similarities/Merge clustered sim-
ilarities. After the convolution with the diagonal kernel, the
weight matrix W of our graph has been populated with a
large number of nonzero entries, clustered around the entries
of W0. The maxima of such clusters represent the strongest
similarities between two regions of the signal. Moreover, only
strong connections indicate significant similarities. Therefore,
we delete all edges with weights below a certain threshold tw
and select from every cluster of connections only the strongest,
i.e the one with locally the largest weight. This last step leads
to the weight matrix Ws which is associated to the graph
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we use for our inpainting algorithm. For an example of the
final, sparsified adjacency matrix, see Figure 3 (right). Figure 4
shows the difference between the original graph after Step 2
and part of the refined graph after Step 4.

Figure 4. Graphs based on feature vectors calculated for an exemplary audio
signal without a gap. Left panel: Initial non-sparse graph, G0, corresponding
to the weight matrix W0, shown in Figure 3 (left). Right panel: Sparse
graph, Gs (only local maximum weights above the threshold considered),
corresponding to the weight matrix Ws, shown in Figure 3 (right).

B. Application: Audio inpainting and the reduced similarity
graph

The usage of the similarity graph for solving an inpainting
problem is rather straightforward. According to the paradigm
described in Figure 1, we want to find two edges (l0, k0) and
(l1, k1), such that
• l0 is close to the beginning of the distorted region and k1

is close to its end,
• k1 − l0 is approximately equal to l1 − k0 and
• Ws(l0, k0) and Ws(l1, k1) are large.

An appropriate choice of (l0, k0) and (l1, k1) is determined by
optimizing these 3 criteria over all possible choices, for l0 and
k1 in some limited range around the signal defect. The signal
segment corresponding to the local features k0, . . . , l1 is then
substituted for the original signal in the range corresponding
to l0, . . . , k1.

For the purpose of inpainting, we are only interested in
edges that connect to at least one vertex either shortly be-
fore, or shortly after, the signal defect. Hence, only a small
horizontal (or vertical) slice of the sparse matrix Ws has to
be computed, greatly reducing the complexity of the graph
creation. Figure 5 shows an example of such a reduced graph
(not to be confused with the sparse graph) and the determined
transitions T1 indexed by (l0, k0) and T2 indexed by (l1, k1)
for an exemplary signal and defect. In practice we use the
reduced for graph all experiment of this paper.

IV. THE SIMILARITY GRAPH IN DETAIL

A. Local audio features

Building a similarity graph for full music pieces from STFT
features is in practice challenging simply due to the number
and size of the obtained features. To be efficient, the number
of features has to remain small in contrast to the complexity of
audio signals. Our solution leverages two techniques to obtain
a good trade-off: 1) an adequate sub-sampling, and 2) a tight
low-redundancy STFT.

Figure 5. Final reduced graph based on exemplary audio features calculated
from an audio signal with a gap. The regions considered for the transitions
are in gray with the gap in between them in white. All available transitions
for the reconstruction are in light gray with the optimally selected T1 and T2
in blue. The nodes indexes l0, l1 and k0, k1 correspond the beginnings and
the ends of the transitions T1 and T2

While audio signals are often sampled at a very high rate, to
compute reliable audio features, a much lower rate is usually
sufficient. We choose a maximum sampling rate of ξmax Hz
(default 12 kHz, see Table II for all default parameters). If a
given signal s ∈ RL is sampled at a higher rate ξs Hz, s is
decimated with a decimation factor d = dξs/ξmaxe, after the
application of an anti-aliasing filter. We denote the decimated
signal by sd.

The short-time Fourier transform (STFT) of sd with respect
to a (real-valued) window function g, hop size a ∈ N and M
channels is defined as

Cm,n :=

L−1∑
l=0

sd[l]g[l − na]e−2πiml/M ,

for n ∈ {0, . . . , L/a−1} and m ∈ {0, . . . ,M−1}. Recall the
decomposition of Cm,n into magnitude and phase: Cm,n =
Mm,ne

iΦm,n , Mm,n ≥ 0, Φm,n ∈] − π, π]. By default, we
choose g to equal a 1024-point Itersine window [32], a = 128
and M = 1024. This particular construction leads to an 8
redundant tight frame, hence preserving equally each signal
frequency component.

The 2 separate parts F1
n and F2

n of the feature vector fn are
obtained as follows.

dB-Spectrogram. Let SdBm,n := 20 log 10(Mm,n), n ∈
{0, . . . , L/a − 1} and m ∈ {0, . . . ,M − 1}. For more
convenient handling, SdB is limited to a fixed range and peak-
normalized, resulting in

F1
m,n = t−1s

(
SdBm,n −max

k,l
(SdBk,l ) + ts

)
+

,

where (x)+ = x, if x > 0, and 0 otherwise. By default,
ts = 50 dB. Figure 2 (top) shows F1 for an exemplary audio
signal.
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Relative instantaneous frequency. In [29], the authors
show that an instantaneous frequency estimate can be asso-
ciated to Cm,n by

ξ̃m,n :=
ξsm

M
− Im(Ctd

m,n/Cm,n), (3)

where Ctd
m,n :=

∑L−1
l=0 sd[l]g

′[l − na]e−2πiml/M and g′ is
a discrete derivative of g. The second term in the equation
above is in fact an equivalent expression for the partial
derivative Φtd

m,n of Φ, with respect to n. ξ̃m,n might fluctuate
quickly and its range depends on m. Both these properties
are undesired for our purpose. Therefore, we consider only
its relative part, i.e. the second term in Eq. 3, and perform
a channel-wise smoothing of each ξ̃m,·, m ∈ 0, . . . ,M −
1, by convolution with a localized kernel vker (default: 8-
point Hann window). Additionally, the expression for ξ̃m,n
is unstable in regions of small magnitude Mm,n [33]. With
tp = maxm,n |Im(Ctd

m,n/Cm,n)|, we define

F2
m,n =

{
−t−1p

(
Im(Ctd

m,·/Cm,·) ∗ vker
)

[n] if F1
m,n > 0,

0 else.

The combined feature vector is obtained as

fn = (F1
1,n, . . . ,F

1
M−1,n, λF2

1,n, . . . , λF2
M−1,n)T ,

for n = 0, . . . , L/a−1. We choose a default value of λ = 3/2,
since this choice resulted in similar importance placed on both
sub-features.

B. Creation of the similarity graph

When it comes to the graph creation, we desire an automatic
parameter selection adapting to the audio features. For the
creation of the initial graph, we only need to determine the
value of σ in the expression (1) for the preliminary weight
matrix. Denoting as Kn the set of K approximate nearest
neighbors of the vertex n, our solution is to set σ to the average
squared nearest neighbor distance

σ =
1

NK

N−1∑
n=0

∑
l∈Kn

‖fn − fl‖22.

Thus W0(l, k) ≈ 1 if fl and fk are close, and decreasing
towards 0, the more fl and fk differ. Our experiments showed
that K of 40 is a good default value, which should be increased
if the music is expected to be very redundant.

To obtain W from W0 in (2), the length of the convolu-
tion kernel must be fixed. After the convolution, the edges
in the graph describe the similarity of signal segments of
aLK

ξs
dξs/ξmaxe seconds duration. The choice of LK determines

the importance of long duration similarities over such with
short duration. We used LK = 40 as a default value in order
to consider roughly half-second segments for signals sampled
at 44.1 kHz, see Figure 6.

To transition from W to Ws, we first perform a thresh-
olding by tw. In W0, each entry can be 1 at maximum, see
(1). In W, solitary entries will be smaller than 1 and entries
surrounded by other high-valued entries will be larger than 1.
In order to suppress solitary entries, we used tw = 2 as a

Figure 6. Convolution kernel used to enhance the diagonal shape of the
weight matrix. Here Lk = 40.

default value. The final step consisting of selecting the local
maxima by choosing points that are equal to or larger than the
four direct neighbors. In detail Ws is defined as

Ws(l, k) =


W(l, k) if W(l, k) ≥

max{tw,W(l ± 1, k ± 1)}
0 otherwise.

The notation ± should be interpreted as the collection of all
possible choices, i.e. the maximum over all direct neighbors
in W

When applying the calculation of the transition graph to a
signal where the distorted area is known, the computational
cost can be further reduced. In particular, only a partial
transition graph needs to be computed because we are only
interested in outgoing connections within the short region
before, and incoming connections within a short region im-
mediately after the distortion. Conceptually, we consider only
small L1 and L2, cp. Figure 1 and Section V-A. Therefore, the
K nearest neighbors search and all the following operations,
is not performed on all nodes, but only for a small subset
of features in the direct vicinity of the signal defect. This
allows us to not only greatly reduce the computation cost, but
also reduce the size of the optimization problem described in
Section V-A. An example of such resulting graph is given in
Figure 5.

V. THE INPAINTING STEP IN DETAIL

A. Selection of optimal transitions

To select the optimal transition, we need to transform
the three conditions of Section III-B into a mathematical
objective function. Let ds, de denote the index of the nodes
corresponding to the start and end of the distorted region. In
the notation of the previous section, only edge (l0, k0), (l1, k1)
with l0 ∈ L1 := {[ds−ε1, ds] and k1 ∈ L2 := [de, de+ε2]} are
considered acceptable. In our experiments, we observed that
setting ε1 = ε2 to a length corresponding to approximately
5 seconds yielded good results. The region considered for
possible transition can be seen as the red interval in Fig 5.

Among all acceptable edges, we search for the solution that
minimizes the objective function

f ((l0, k0), (l1, k1)) = |(k1 − l0)− (l1 − k0)|
+ γ2 ((ds − l0) + (k1 − de))

+ γ3

(
1

Ws(l0, k0)
+

1

Ws(l1, k1)

)
.

(4)
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Compare the definition of f with Figure 1 to see that: The
first term controls the difference D2−D1, the second term the
distances L1, L2 from the defect and the third term controls the
quality of the transitions. By tuning γ2 and γ3, we can vary
the importance of the individual terms. In our experiments,
γ2 = 1 and γ3 = 100 have provided good results.

Since the number of acceptable transitions is small, the
computational benefit from using a sophisticated optimization
algorithm is negligible. Hence, we solve the optimization
problem by simply computing exhaustively the values of the
objective function for each set (l0, k0), (l1, k1) with l0 ∈ L1

and k1 ∈ L2.

B. Signal reconstruction

When two audio signals are concatenated naively, disconti-
nuities and phase jumps might result in clicking artifacts. To
reduce these effects, a smoothed transition is clearly preferred.
We propose the following: Since the features are obtained
from a STFT with time step a, with respect to a possibly
decimated signal, the time resolution of the similarity graph
analysis equals ã := adξs/ξmaxe samples. In other words, the
preliminary solution obtained in the previous step suggests the
insertion of the signal samples s[ãk0, . . . , ãl1 − 1] in place of
s[ãl0, . . . , ãk1−1]. To further improve the transition, we allow
to adjust the transition positions ãl0 and ãk1 by up to half
the similarity graph’s time resolution, i.e. ã/2 samples. The
optimal adjustment is determined by maximizing a correlation,
as proposed in [5] and described below. Denote by Lw the
length of the analysis window g and L̃w := dLw/2edξs/ξmaxe.
The final transitions are given by (l̃0, k0), (ãl1, k̃1), where

l̃0 = arg max
l∈[ãl0−ã/2,ãl0+ã/2[

〈sl, s[ãk0 − L̃w, . . . , ãk0 + L̃w − 1]〉,

k̃0 = arg max
l∈[ãk1−ã/2,ãk1+ã/2[

〈sl, s[ãl1 − L̃w, . . . , ãl1 + L̃w − 1]〉.

Here, sl ∈ R2L̃w is the vector

sl[j] =

{
0 if l − L̃w + j ∈ [ds, de],

s[l − L̃w + j] otherwise.

The obtained indices l̃0, k̃1 maximize the correlations between
the original signal and the inpainting candidate.

In order to obtain smooth transitions in the restored signal,
we perform a time-frequency domain cross-fading. Conceptu-
ally, this requires us to consider 3 different arrays of short-
time Fourier coefficients with time step offsets l̃0− l0ã, 0 and
k̃1 − k1ã, respectively:

C(1)
m,n = Vg̃ s̃[(n− l0)ã+ l̃0,mL/M ],

C(2)
m,n = Vg̃ s̃[nã,mL̃/M̃ ],

C(3)
m,n = Vg̃ s̃[(n− k1)ã+ k̃1,mL/M ].

This ensures that in C(1), the l0-th time frame is centered
at the signal position l̃0 and in C(3), the k1-th time frame
is centered at position k̃1. The analysis window g̃ is chosen,
such that on the undecimated signal s, it mimics g acting on
sd. Hence, its length and the number of channels M are set

to 2L̃w. Thus, by default, we choose g̃ to also be of Itersine
shape.

The restored signal can now be obtained by applying the
inverse STFT to the combined matrix,

Crec =
(
C

(1)
·,1 , . . . ,C

(1)
l0−1,C

(2)
·,l1 , . . . ,C

(2)
·,k0−1,

C
(3)
·,k1 , . . . ,C

(3)
·,L/ã−1

)
.

In practice, complexity is further reduced without altering the
result, by computing C(j), j = 1, 2, 3, only for the time-
positions relevant to the cross-fading, thus obtaining two small
submatrices of Crec. Note that any coefficient vector C

(j)
·,n ,

j = 1, 2, 3, n = 0, . . . , N − 1, only affects the reconstruction
on an interval equal to the window length 2L̃w. Hence,
both transitions have a duration of 2L̃w and the first can be
recovered from(

C
(1)
·,l0−r, . . . ,C

(1)
l0−1,C

(2)
·,l1 , . . . ,C

(2)
·,l1+r−1

)
,

and similarly for the second transition. Here, r := 2dL̃w/ãe
is a generous estimate of the ratio between the window length
and the hop size. The inverse STFT is then applied to these
submatrices and the cross-fade regions, which are obtained
as the central part of those inverse STFTs, are placed at
the desired position in the signal. All other operations are
performed in the time domain. To ensure equivalence with
a complete STFT computation, the segments have to start/end
M samples before/after the cross-fading.

VI. NUMERICAL EVALUATIONS

In this section we provide a numerical evaluation of the
proposed algorithm.

First, we verify the algorithm in a setting where the gap
content is provided with the remaining signal. A correct
implementation should be able to perfectly replace the gap by
exactly the lost content. Second, we investigate algorithm’s
computational performance in terms of average runtime.

For the evaluations, the algorithm was implemented in
MATLAB. The implementation is based on LTFAT [34] for
feature extraction, and on the GSPBox [35] for graph creation.
For non-commercial use, the algorithm is available online2,
alongside a browser-based demonstration 3. Table II provides a
summary of the algorithm parameters used for the evaluations.

A. Verification

Here, we address the question whether the algorithm per-
fectly recovers the gap when an exact copy of the missing seg-
ment is present within the reliable signal. For this purpose, we
used a set of 16 uncorrupted audio signals with various content
and at the sampling rate of 44100 Hz. First, redundant signals
were created by repeating the signal, i.e. placing a copy of the
signal at its end. Then, each redundant signal was corrupted by
creating a gap of 2 seconds. For each signal, the experiment
was repeated five times with randomly chosen position of a
gap, yielding 80 corrupted signals. Then the algorithm was

2https://epfl-lts2.github.io/rrp-html/audio_inpainting/
3https://lts2.epfl.ch/web-audio-inpainting/

https://epfl-lts2.github.io/rrp-html/audio_inpainting/
https://lts2.epfl.ch/web-audio-inpainting/
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applied on each of the corrupted signal. In all reconstructions,
the `2-norm difference between the original and reconstructed
signals was in the range of numerical precision, implying
that each corrupted signal was perfectly restored. Hence, we
consider the implementation of the presented algorithm as
verified.

B. Computational complexity

The algorithm can be separated into different steps that
all have different computational requirements. Here, we in-
vestigated the individual costs of each step and their relative
importance in the overall performance of the algorithm. The
evaluation was performed on a modern notebook (2.5 GHz
Intel i7, 2 cores, 16 GB RAM) for the same set of corrupted
signals as in Sec. VII. Table I shows mean and standard
deviation of the computation time per minute of audio signal.
On average, each minute of audio signal required 2.47-s
computation time for the reconstruction.

The feature computation, graph creation and the selection of
the optimal transition, performed on the reduced sparse graph
(see Figure 5), scale linearly with the length of the provided
reliable data, in terms of both storage and time complexity.
As a result, our result consists of the timing per minute of
analyzed music. In all our experiments, the reliable data was
given by a full song, without the corrupted segment. Note that
linear complexity can only be achieved by considering the
reduced graph. For the full sparse graph W0, complexity of
the graph creation is O(N logN) and the transition selection
would even scale roughly quadratically, i.e. be O(N2). Even if
the selection is restricted to the range considered in the reduced
graph, linear complexity would be out of reach. Therefore,
the computation time per minute is not a reliable indicator
anymore. We just remark that on the dataset used, the graph
construction was on average 8 times slower, while the average
duration for transition selection increased by a factor of 40,
when performed on the full sparse graph. Although we did not
systematically evaluate memory usage of the method, it should
be noted that restricting to the reduced graph is considerably
more efficient in that regard, as well.

If multiple corruptions are to be removed using the same
set of reliable data, the algorithm benefits from the fact that
features only need to be computed once. Since the feature
computation is the bottleneck of the method (this can be seen
in Table I), this may lead to significant boosts of computational
performance in the case of multiple gaps.

Processing step Reduced graph (Mean) Reduced graph (STD)
Feature extraction 1.84 0.18
Graph construction 0.50 0.06
Transition selection 0.02 0.004
Signal reconstruction 0.04 0.007

Total 2.47 0.18

Table I
AVERAGE EXECUTION TIME OF THE PROPOSED METHODS PER MINUTE OF

PROVIDED AUDIO (BASED ON A DATABASE OF 16 SONGS) FOR THE
REDUCED GRAPHS, SEE FIG. 5.

VII. PERCEPTUAL EVALUATION

In order to estimate the potential of the proposed algorithm
for music, we conducted a psychoacoustic test, in which we
evaluated the impact of the artifacts occurring from inpainting
various songs from a music database. In particular, we were
interested in addressing the following questions:

1) How often are subjects able to detect an alteration
(detectability)? The answer gives us access to how often
our algorithm is able to fool the listener.

2) How precisely can subjects pinpoint the alteration? The
answer gives us an indication of the inpainting quality
and of the confidence of the test subject.

3) How disturbing are the detected artifacts (severity)? The
answer provides some good insights into the reconstruc-
tion quality even when the listener is not fooled.

4) Is the familiarity of the song correlated with the de-
tectability or the severity? The answer gives some
intuition about the quality of the reconstruction and
ensures that we are not only fooling the non-familiar
test subjects.

In order to ensure that our experiment provides meaningful
results truly describing the potential of the proposed algorithm,
our subjects were familiar with the tested music genres and
we have collected ratings for familiarity and liking the songs.

A. Testing methodology
Material. The sound material consisted of songs from the

following genres: pop, rock, jazz, classical. These genres were
selected to cover the most common listening habits and, with
respect to music structure also include many other, similar
genres like blues, country, folk, oldies, hip-hop, etc. Six songs
per genre were selected from hundreds of songs with the aim
to well-represent the genre.

Subjects. In order to test subjects familiar with our material,
in a self-assessment questionnaire, a candidate had to provide
the average weekly listening duration (in hours) to the genres
pop, rock, jazz, classical, and others. For the evaluation, only
candidates listening at least 4 hours per week to music from all
four main genres in total were considered. In total, 15 subjects
were selected for the test. They were paid on an hourly basis.

Figure 7. The interface used in the experiment. See text for more details.

Task. In each trial, subject listened to a sound stimulus and
was asked to pay attention to a potential artifact (see Fig. 7).



9

A slider scrolled horizontally while the sample was played
indicating the current position within a stimulus. The subject
was asked to tag the artifact’s position by aligning a second
slider with the begin of the perceived artifact. Then, while
listening again to the same stimulus, the subject was asked
to confirm (and re-align if required) the slider position and
answer three questions:

1) Severity (S): How poor was it ("Wie schlimm ist es")?
The possible answers were: (0) no issue ("Kein Fehler"),
(1) not disturbing ("Nicht störend"), (2) mildly disturb-
ing ("Leicht störend"), and (3) not acceptable ("Nicht
akzeptabel").

2) Familiarity (F): How familiar are you with this song
("Wie gut kennen Sie dieses Stück"): (0) never heard
before ("Noch nie gehört"), (1) I have heard it before
("Schon mal gehört"), (2) I often listen to ("Höre ich
öfters"), (3) I know it well ("Kenne ich gut"), and (4) I
can play/sing it ("Kann ich spielen/singen").

3) Liking (L): How do you like this song ("Wie gefällt
Ihnen dieses Stück"): (0) not at all ("Gar nicht"), (1)
I can not tell ("Kann nicht sagen"), (2) nice ("Nett"),
(3) very nice ("Sehr nett"), and (4) amazing ("Bin
begeistert").

The questions were answered by tapping on the corresponding
category. Then, the subject continued with the next trial by
tapping the "next" button.

Before the experiment, the subject was informed about the
purpose and procedure of the experiment and an exemplary
reconstruction was presented. Any questions with respect to
the procedure were clarified.

Conditions. Three conditions were tested. For the inpaint-
ing condition, the song was corrupted at a random place with
the gap of 1 s duration and then reconstructed with the default
parameters from Tab. II. The reconstructed song was cropped
2 to 4 seconds (randomly varying) before and after the gap
resulting in samples of 5 to 9-s duration. The gap was not
allowed to be within the first and last 30 s of the song, but
the inpainting was allowed to use the full song for processing.
For the reference condition, the song was cropped at a random
place with a duration varying from 5 to 10 seconds. The
reference condition did not contain any artifact and was used
to estimate the sensitivity of a subject. For the click condition,
a click was superimposed to the song at a random position
and the result was cropped 2.5 to 4.5 s before and after the
click’s position resulting in samples of 5 to 9-s duration. The
artifact in this condition was used as a reference artifact and
was clearly audible.4

In total, three inpainted, one reference, and one click
conditions were created per song.

The combination of genres, songs-per-genre, and
conditions-per-song resulted in a block of 120 stimuli.
All stimuli were normalized in the level (the click condition
was normalized before superimposing the click). Within the
block, the order of the stimuli and conditions was random.

4For other music genres like electronic music, the click might not be always
audible and an other type of reference artifact would have been required.

Each subject was tested with two blocks, resulting in 240
trials per subject in total. Subjects were allowed to take a
break at any time, with one planned break per block. For each
subject, the test lasted approximately 2.5 hours.

B. Results
Detection rate of the artifacts. The detection results are

shown in the left panel of Fig. 8. The average detection
rates for the click, inpainting, and reference conditions were
95.6±5.0%, 40.1±19.2%, and 28.6±17.9%, respectively. The
high detection rate and small variance in the click condition
demonstrate a good attention of our subjects, for whom
even a single click was clearly audible. The clearly non-zero
rate in the reference condition shows that our subjects were
highly motivated in finding artifacts. The detection rate in the
inpainted condition was between those from the reference and
click conditions. Note that the reference condition did not
contain any artifacts, thus, the artifact’s detection rate in that
condition is here referred to as the false-alarm rate.

The large variance of the false-alarm rate shows that it
is listener-specific. Thus, for further analysis, the detection
rates from the inpainted condition were related to the listener-
specific false-alarm rate, i.e., the sensitivity index d′ was used
[36]. The false-alarm rate can be considered as a reference for
guessing, thus, d′ = 1 indicates that the artifacts was detected
at the level of chance rate. The right panel of Fig. 8 shows
the statistics of d′ for the inpainting and the click conditions.
For the click condition, the average across all subjects was
4.36 ± 1.91, again demonstrating a good detectability of
the clicks. For the inpainting condition, the average d′ was
1.49 ± 0.42, i.e., slightly above guessing (d′ = 1). A t-test
performed on listener’s d′s showed a significant (p = 0.0005)
difference from guessing, indicating that the our listeners,
as a group, were able to often detect the artifacts better
than guessing. A listener-specific analysis, however, showed
that only seven out of our 15 subjects were able to detect
the inpainting better than chance, as revealed by a 2-by-2
contingency table analysis with the false-alarm and inpainting-
detection rates evaluated at a significance level of 0.05.

Influence of familiarity on the detectability. A natural
question that arises for this method is, in how far familiarity
with a song will influence the detectability of the artifacts.
While a comprehensive answer to this question is beyond the
scope of this paper and would require a whole new study, here
we aim at a brief impression for our subject pool.

Fig. 9 shows the detection rate (left panel) and the d′

(right panel) as functions of the familiarity ratings. While
there seems to be a correlation of detectability and familiarity,
surprisingly the link is not very strong. Arguably, there seems
to be nearly no difference in the detection rates between songs
rated with familiarity rating between 2 ("I often listen to")
and of 4 ("I can sing/play it"), while there seems to be some
difference to the other ratings of less familiarity. Interestingly,
even for the very familiar songs the detection rate is much
lower than for clicks and the d′ is only twice as large as that
for the the chance rate.

Detection of the artifact position. Subjects who suc-
cessfully detected an artifact should be able to provide an
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Figure 8. Detectability of artifacts is much lower than those of clicks
but slightly higher than guessing. Left: Statistics of the rate of perceived
artifacts across all subjects. Right: Statistics of the sensitivity index d′, i.e.,
the inpainting-detection rate relative to the false-alarm rate, across all subjects.
d′ of 1 corresponds to the chance rate. Condition: Reference (R), inpainted
(I), and click (C). Statistics: Median (circle), 25% and 75% quartiles (thick
lines), coverage of 99.3% (thin lines, assuming normal distribution), outliers
(crosses, horizontally jittered for a better visibility).

Figure 9. Detectability is not much related with the familiarity. Left: Statistics
of the rate of perceived artifacts across all subjects as a function of the
familiarity rating. Right: Statistics of the sensitivity index d′ as a function
the familiarity rating. All other conventions as in Fig. 8.

information about its position within the stimulus, i.e., the
perceived position of the artifact should correlate with its
actual position. The left panel of Fig. 10 shows the perceived
positions plotted versus the actual positions of the artifacts, for
an exemplary average listener. The reported perceived artifact’s
position might refer to gap’s begin or end, with the choice
even varying from stimulus to stimulus. Thus, we correlated
the reported position with the begin, the end, and the nearer
of the two positions (referred to as "best choice"). The "best
choice" positions are highlighted by triangles.

Across all subjects, correlation coefficients’ statistics is
shown in the center panel of Fig. 10. The moderate correlations
indicate that as soon as our subjects detected an artifact, they
had some estimate of its position within the stimulus. In
contrast, for the clicks, the high correlation indicates that our
subjects were able to exactly determine and report the position

of the click artifact.
In order to determine the precision in the reporting the arti-

fact’s position, we also calculated the difference between the
perceived and actual artifact’s position. The standard deviation
of these differences calculated for a subject is referred to as
the precision error. Their statistics across subjects is shown
in the right panel of Fig. 10. For the click condition, the
average precision error across all subjects was 157± 130 ms.
It describes the procedural precision of subjects within our
task. For the inpainting condition, the average precision error
considering the artifact’s begin, end, and "best choice" as
the actual position was 1232 ± 180 ms, 1247 ± 199 ms, and
1069 ± 115 ms, respectively. The "best choice" shows the
lowest precision errors, being more than six times larger than
the procedural precision error. This indicates that even if
detected, our subjects had large difficulties to determine the
artifact’s position and these difficulties did not originate from
the task.

Figure 10. The position of perceived artifacts is weakly correlated with their
actual position. Left: Perceived versus actual artifact’s begin and positions
(blue squares and green circles, respectively) for an exemplary subject.
Triangles show the "best choice", i.e., perceived positions being nearer to
either begin or end actual positions. Center: Statistics of the correlation
coefficients for all subjects. Right: Statistics of the precision error for all
subjects. B, E: perceived position versus begin and end of the artifact,
respectively, in the inpainting condition. X: perceived position versus "best
choice" in the inpainting condition. C: perceived position of the click in
the click condition. CCB , CCE , CCX : cross-correlation coefficient for
the condition B, E, and X, respectively, of the exemplary listener. All other
conventions as in Fig. 8).

Disturbance rate of detected artifacts. Finally, we have
analyzed the ratings we have collected. The left panel of
Fig. 11 shows the statistics of the severity ratings reported
in the inpainted and click conditions. For the click condition,
most of the ratings were between 1 ("not disturbing") and
3 ("not acceptable") with an average across all subjects of
2.00± 0.55. This indicates that on average, our subjects rated
the clicks as disturbing. In contrast, for the inpainted condition,
most of the ratings were between 0 ("no issue") and 1 ("not
disturbing") with an average of 0.60±0.33. This indicates that
on average, our subjects rated the inpainting results halfway
between "no issue" and "not disturbing".

This analysis considered all inpainted stimuli so far, ig-
noring the fact that for some of them our subjects detected
the artifact and for some not. A statistic of severity ratings
considering detected artifacts only (i.e., S > 0) is shown
in the center part of the left panel in Fig. 11. The average
across all subjects was 1.46 ± 0.35. This is higher than the
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average considering all severity ratings, but still significantly
(p = 0.0002) lower than the severity of the clicks as revealed
by a paired t-test calculated between the ratings for clicks and
inpainted but detected artifacts. This indicates that even when
the inpainting artifacts were perceived, their severity was rated
significantly lower than that of the clicks.

Figure 11. Statistics of ratings across all subjects. Left: severity ratings (S).
Center: Familiarity (F) and liking (L) ratings. Condition: Inpainted (I), click
(C), ratings considering perceived artifacts only (S>0). Right: Statistics of
Pearson’s correlation coefficients between S and F (SF), S and L (SL), as
well as F and L (FL). All other conventions as in Fig. 8.

Influence of the familiarity on the severity. The stimulus’
familiarity and liking might also have influenced our experi-
mental outcome. The average ratings for the familiarity and
liking are shown in the center panel of Fig. 11. Most of the
familiarity ratings were between category 1 ("I have heard it
several times") and 2 ("I often listen to"), with an across-
subject average of 1.23 ± 0.41. Considering the perceived
artifacts only (i.e., S > 0), the average increased to 1.44±0.45.
This increase was significant (p = 0.022, paired t-test on all
and the perceived only ratings), indicating that our subjects
were slightly more familiar with stimuli containing detectable
artifacts. The liking ratings were mostly between 1 ("I cannot
tell") and ("very nice"), with an average of 2.10 ± 0.43.
Considering perceived artifacts only, the average increased to
2.13±0.44. This increase was not significant (p = 0.68, paired
t-test between all and the perceived only ratings). As it seems,
the artifact’s detectability was not related to the song liking.

The link between the severity of an artifact and the fa-
miliarization and/or liking ratings was further investigated by
calculating the Pearson’s correlation coefficients between the
severity and other ratings. The right panel of Fig. 11 shows
the group statistics of the correlation coefficients, which, on
average, were 0.14± 0.16 and 0.09± 0.17 for the correlation
of severity with familiarity and liking, respectively. Such low
correlations indicate that neither the familiarity nor liking
was clearly linked with the perceived artifact’s severity. Out
of curiosity, also the correlation between the familiarity and
liking was calculated, resulting in an across-subject average of
0.54±0.26. This correlation indicates a good link between the
familiarity and liking of our stimuli, but also raises evidence
that familiarity and liking are not fully equivalent.

VIII. CONCLUSIONS

We have introduced a method for the restoration of audio
signals in the presence of corruption/loss of data over an
extended, connected period of time. Since, for complex audio
signals, the length of the lost segment usually prohibits the
inference of the correct data purely from the adjacent reliable
data, our solution is based on the larger scale structure of
the underlying audio signal. The reliable data is analyzed,
detecting spectro-temporal similarities, resulting in a graph
representation of the signal’s temporal evolution that indicates
strong similarities. Inpainting of the lost data is then achieved
by determining two suitable transitions between the border
regions around the corrupted signal segment and a region that
is considered to be similar. In other words, the algorithm jumps
from shortly before the gap to a similar section of the audio
signal and, after some time, back to a position shortly after
the gap, effectively exchanging the corrupted piece with a
suitable substitute. Consequently, the algorithm is capable of
efficiently exploiting naturally occurring redundancies in the
reliable data.

In order to test the efficiency of our algorithm, we have
conducted a psychoacoustic evaluation. The results show that
our listeners were able to detect 40% of the artifacts implying
that our method completely fooled our listeners more than
60% of the time. Our listeners showed a false-alarm rate of
28%, indicating that sensitivity of correctly detecting a gap
was with d′ = 1.49 rather low (as compared with d′ = 4.36
for well-detectable clicks and with d′ = 1 for the chance rate).
In fact, listener-specific analysis showed that only seven out
of 15 tested listeners were able to detect the inpainting on a
statistical significant level. Our study showed two additional
quality signs of our method. First, the detected artifacts were
rated on average between “not disturbing” and “mildly disturb-
ing”. Second, even though detected, our subjects only vaguely
determined the artifact’s position, with the six-fold detection
precision error than that in the reference condition. While our
test was limited to four music genres, they covered many music
structures usually found in other genres. However, inpainting
performed on a very different genre like the contemporary
electronic music might have led to different results, both
numeric and perceptual.

Besides having built and tested a novel audio inpainting
algorithm, it is worth noting that the graph constructed with
our method gives an intuitive analysis of the signal at hand,
exposing self-similarities and global structure and can be used
for a number of different purposes. For example, a song can
be re-composed by following the edges of the graph while
respecting the global music structure. Multiple matches in
a highly repetitive song can be used as a tool for further
song modifications, offering a creative tool for algorithmic
composing, e.g., in the field of contemporary electronic music.

Similarity graphs can be used in many applications, thus, it
is important to further improve this kind of signal represen-
tation. Hence, future work includes closing the gap between
the internal similarity measures and human hearing by incor-
porating perceptually motivated similarity measures derived,
possibly, from a perceptually-motivated representation [37]
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or a computational model of the auditory system [38]. Such
a modification will greatly improve the reliability of the
algorithm and its results. It seems worth noting, however, that
even after considering an auditory model, reliable retrieval
of strongly context-sensitive data such as speech and singing
voice will require additional contextual information and might
be better achieved by a generative approach [39], applied after
separating voice and music in the signal [40].
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Quantity Variable used Default value Unit
Audio features

Maximum sampling frequency ξs,max 12′000 Hz
Size of the patch a 128 samples
Number of frequencies M 1024 -
Length of the window Lw M samples
Type of window - ’Itersine’ -
Dynamic range p 50 dB
Trade-off between the amplitude and phase λ 3/2 -

Graph
Initial number of neighbors K 40 -
Kernel length Lk 40 -
Hard threshold for the weight matrix tw 2 -

Optimization
Regularization parameter 1 γ1 1 -
Regularization parameter 2 γ2 100 -

Table II
DEFAULT PARAMETERS OF THE ALGORITHM

[40] Y. Li and D. Wang, “Separation of singing voice from music ac-
companiment for monaural recordings,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 15, no. 4, pp. 1475–1487, 2007.
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