
GSPBOX: A toolbox for signal processing on graphs
Nathanael Perraudin, Johan Paratte, David I Shuman, Lionel Martin, Vassilis Kalofolias,
Pierre Vandergheynst & David K.Hammond

Ecole Polytechnique Fédérale de Lausanne (EPFL), LTS2
Website: https://lts2.epfl.ch/gsp/

Abstract
The Graph Signal Processing toolbox (GSPBox) is a MAT-

LAB/Python open-source toolbox designed for graph signal processing
and data mining tasks such as filtering, de-noising, prediction, classi-
fication, data representation and visualization. Its purpose is to serve
as a tool for achieving new scientific developments in a reproducible
research perspective.

We propose an overview of the current features of the toolbox:
graph construction, graph operators, graph learning, filter design, spec-
tral filtering methods, graph reduction, bindings with the optimization
toolbox UNLocBoX, etc.

In order to prepare future collaborations between different research
groups, we additionally present the modules that are currently under
development and will be released in the near future.

1 The box
The general design of the GSPBox focuses around the graph ob-
ject [1], a structure containing the necessary information to use
most of the algorithms.

Toolbox features
• MATLAB and Python libraries

• Efficient implementations of a large set of graph
signal processing algorithms

• Documented, maintained and regularly tested

• Fast development at the state of the art of the
graph signal processing field

• Binded with the UNLocBoX to solve your graph
regularized problems

2 Graph
To initialize a graph from a weight matrix W , use

1 G = gsp_graph(W);

Alternatively, the toolbox contains a lot of synthetic graphs and
an optimized nearest neighbor graph function

1 G = gsp_nn_graph(X); % X is a matrix of coordinates

Finally, if you do not possess any coordinates, you can build a
graph using graph learning methods:

1 a = 1; % Regularization parameter 1
2 b = 1.5; % Regularization parameter 2
3 % For X is a matrix of smooth signals
4 G = gsp_learn_graph_log_degrees(X, a, b);

All those functions initialize the graph structure with the argu-
ments inside Table 1.

Attribute Format Data type Description
Mandatory fields

W NxN sparse matrix double Weight matrix W

L NxN sparse matrix double Laplacian matrix L
d Nx1 vector double The diagonal of the de-

gree matrix
N scalar integer Number of vertices
Ne scalar integer Number of edges
plotting [M]: structure [P]: dict none Plotting parameters
type text string Name, type or short de-

scription
directed scalar [M]: logical

[P]: boolean
State if the graph is di-
rected or not

lap_type text string Laplacian type
Optional fields

A NxN sparse matrix [M]: logical
[P]: boolean

Adjacency matrix

coords Nx2 or Nx3 matrix double Vectors of coordinates in
2D or 3D.

lmax scalar double Exact or estimated max-
imum eigenvalue

U NxN matrix double Matrix of eigenvectors
e Nx1 vector double Vector of eigenvalues
mu scalar double Graph coherence

Table 1: Attributes of the graph object

In order to speed-up computation with MATLAB, an optional
field can be pre-computed:

1 % The Fourier basis
2 G = gsp_compute_fourier_basis(G);
3 % The maximum Laplacian eigenvalues
4 G = gsp_estimate_lmax(G);
5 % The gradient operator
6 G = gsp_adj2vec(G);

3 Operators

The most central operator in graph signal processing is the
Laplacian. It is stored in G.L. In order to select the correct def-
inition, use:

1 lap_type = 'normalized';
2 G = gsp_create_laplacian(G, lap_type);

The available definitions are given in Table 2.

Name Laplacian matrix (operator)
Undirected graph

Combinatorial Laplacian D−W

Normalized Laplacian D−
1
2(D−W)D−

1
2

Directed graph
Combinatorial Laplacian 1

2 (D+ + D− −W −W∗)

Degree normalized Laplacian I− 1
2

(
D
−1

2
+ [W + W∗]D

−1
2
−

)
Distribution normalized Laplacian 1

2

(
Π

1
2PΠ−

1
2 + Π−

1
2P∗Π

1
2

)
Table 2: Different definitions for graph Laplacian operators and their asso-
ciated edge derivatives. (For directed graph, d+,D+ and d−,D− define the
out degree and in-degree of a node. π,Π is the stationary distribution of the
graph and P is a normalized weight matrix W.

Based on the Lapacian, the toolbox is able to perform

• Fourier transform [M]: gsp_gft

• Kron reduction [M]: gsp_kron_reduce

• Gradient computation [M]: gsp_grad

• Multi-resolution analysis using a pyramid transform [M]:
gsp_pyramid_analysis

4 Filters

Filters are central in graph signal processing. They are imple-
mented as:

1 g = @(x) exp(-x);
2 tau = 1;
3 h = @(x) 1./(1+tau*x);
4 % Filterbank composed of g and h
5 fb = {g, h};

The toolbox contains a large set of predefined designs such as:

• Wavelets (Filters are scaled version of a mother window)
[M]: gsp_design_mexican_hat & gsp_design_
abspline

• Gabor (Filters are shifted version of a mother window)
[M]: gsp_design_itersine

• Low pass filter (Filters to de-noise a signal)
[M]: gsp_design_expwin

5 Plotting

The toolbox contains a few plotting functions

1 gsp_plot_graph(G); % Plot a graph
2 gsp_plot_signal(G, sig); % Plot a signal
3 gsp_plot_filter(G, g); % Plot a filter

Figure 1: Visualization of graph and signals using plotting functions.

6 Python
The Python port of the library works similarly. Each package
described here is a module of the library. Graph functions are in
[P]: pygsp.graphs, filters in [P]: pygsp.filters, oper-
ators in [P]: pygsp.operators and so on.

All mathematical operations are performed with matrices using
numpy and scipy libraries. Plotting requires either matplotlib or
pyqtgraph to be installed.

7 Help
Starting with the GSPBox
1. Get a free version online:

[M]: https://lts2.epfl.ch/gsp
[P]: pip install pygsp

2. Do the tutorial:
[M]: Run gsp_demo
[P]: https://lts2.epfl.ch/pygsp/tutorials

3. Get help from the documentation, the article [2], or by con-
tacting us gspbox-support@groupes.epfl.ch

If you need additional functions, please ask. Unreleased
modules include:
• Machine learning / Optimization

• Clustering

• Low rank extraction

• Hypergraphs

• Bi-graphs, vertex-time signal processing

References
[1] D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and

P. Vandergheynst. The emerging field of signal processing
on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains. IEEE Signal Process.
Mag., 30(3):83–98, May 2013.

[2] Nathanaël Perraudin, Johan Paratte, David Shuman, Vassilis
Kalofolias, Pierre Vandergheynst, and David K. Hammond.
GSPBOX: A toolbox for signal processing on graphs. ArXiv
e-prints, August 2014.

[3] Nathanael Perraudin, David Shuman, Gilles Puy, and Pierre
Vandergheynst. Unlocbox a matlab convex optimization
toolbox using proximal splitting methods. arXiv preprint
arXiv:1402.0779, 2014.

Acknowledgements
We would like to thank all coding authors of the GSPBOX. The toolbox was
ported in Python by Basile Châtillon, Alexandre Lafaye and Nicolas Rod.
The toolbox was also improved by Nauman Shahid and Yann Schönenberger.

This work has been supported by the Swiss National Science Founda-
tion research project Towards Signal Processing on Graphs, grant number:
2000_21/154350/1.

Demonstration in 7 steps

Use it as a black-box
MATLAB code

1 % 1) Start the toolbox
2 gsp_start;
3 % 2) Create a graph
4 N = 100; % number of nodes
5 G = gsp_sensor(N);
6 % 3) Compute the Fourier basis
7 G = gsp_compute_fourier_basis(G);
8 % 4) Create a smooth signal with noise
9 x = G.U(:, 2);

10 y = x + 1/sqrt(N)*randn(N, 1);
11 % 5) Select a filter
12 g = gsp_design_expwin(G, 0.1);
13 % 6) Remove the noise
14 s = gsp_filter(G, g, y);
15 % 7) Display the results
16 figure(1); gsp_plot_signal(G, x); title('Original signal');
17 figure(2); gsp_plot_signal(G, y); title('Noisy signal');
18 figure(3); gsp_plot_signal(G, s); title('Denoised signal');

Python code
1 # 1) Import package
2 import pygsp, numpy as np
3 # 2) Create a graph
4 N = 100 # number of nodes
5 G = pygsp.graphs.Sensor(N)
6 # 3) Compute the Fourier basis
7 G.compute_fourier_basis()
8 # 4) Create a smooth signal with noise
9 x = G.U[:, 1]

10 y = x + np.random.normal(scale=1/np.sqrt(N), size=N)
11 # 5) Select a filter
12 filter = pygsp.filters.Expwin(G, 0.1)
13 # 6) Remove the noise
14 s = filter.analysis(y)
15 # 7) Display the results
16 G.plot_signal(x, plot_name='Original signal')
17 G.plot_signal(y, plot_name='Noisy signal')
18 G.plot_signal(s, plot_name='Denoised signal') Figure 2: Resulting figures.


