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Symbols

R Space of real numbers

C Space of complex numbers

Z Space of integer numbers

M Manifold

C 1(M ) Space of continuous derivable function on M

volM Volume of the manifold

V Vertex set

E Edge set

W Weight function V ×V →R

N Number of vertices (Node): |V |
E Number of edges: |E |
Oc Order of the Chebyshev Polynomial

vi Vertex indexed by i

i ,n Indexes for the Vertex set: 1,2, . . . N

` Indexes for the frequency set: 0,1, . . . N −1

W Weight matrix

D ,d ,d Degree matrix, vector, function

L Laplacian matrix

U Graph Fourier matrix

Λ Diagonal matrix of Laplacian eigenvalues λ

T G
i g Graph localization operator of the kernel g on the vertex vi (Definition 15)

x Graph signal

A∗ Hermitian of A (conjugate and transposed)

H(x) Shannon entropy of x (See equation 4.3)
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sp (x) p-concentration function of x (See equation 4.4)

µG Coherence of the graph Fourier basis U (Definition 9)

δi Kroneker delta localized on the node i

bncN Maps an integer n to 1. . . N using bncN = n −N floor
(n−1

N

)
SG Graph spectrogram function (Definition 16)

SG Discretized graph spectrogram (Definition 17)

Ag Analysis operator of a filter bank (Definition 11)

g (λ) Vector composed of the kernel evaluated on the eigenvalue set, i.e., g (λ)[`] = g (λ[`]) = g (λ`)

Notation conventions
In this thesis we use bold fonts for vectors (x , y , z ,µ) and matrices (A,W ,L) and we reserve

normal fonts for indexes (i ,n,m,k) and functions ( f , g ,h). Also the localization operator

returns a vector, it is written as T G
i g . Vector elements are indexed with brackets x[i ] and

functions with parentheses f (t ). The Hermitian (and the transposed) of a vector/matrix x is

written x∗. Finally, we use ẋ as the estimator of x.
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Abstract

State-of-the-art data analysis tools have to deal with high-dimensional data. Fortunately, the

inherent dimensionality of data is often much smaller, as it has an internal structure limiting

its degrees of freedom. In most cases, this structure can be approximated using a graph,

i.e., a set of nodes connected by edges. Based on this idea, graphs have been largely used in

semi-supervised and unsupervised learning. The canonical assumption when incorporating a

graph prior is to assume that the signal is smooth with respect to the graph, i.e., that connected

pieces of data have similar values. Nevertheless, this hypothesis is insufficient to characterize

more complex relations between the data and its structure, the graph.

To this end, the field of Graph Signal Processing (GSP) extends the graph smoothness hypothe-

sis to a more general assumption. Its key idea is to think of the signal as a sum of harmonic

modes, which are obtained from the eigen-decomposition of the Laplacian, an operator repre-

senting the second order derivative. Thus, the essence of GSP resides in the Fourier transform

defined by the projection on the Laplacian eigenvectors basis, which allows us to filter graph

signals.

However, GSP suffers from a counter-intuitive irregularity. Contrarily to the classical Fourier

basis, the energy of the graph Laplacian eigenvectors is not spreading uniformly on the vertex

set and can be highly concentrated in a region of the graph. This non-uniformity results in

a lack of any intuitive translation operator and consequently poses challenges to generalize

some of the classical signal processing theory, e.g., stationarity, uncertainty principles, or

sampling. In this thesis, we answer these difficulties by treating each node specially according

to its surrounding structure. This is achieved using an operator called localization that shifts a

kernel defined in the spectral domain around a specific node while adapting to the local graph

structure.

In the first part of the thesis, we focus on harmonic analysis in GSP. We start by making use

of the norm of localized kernels to capture the local spectral features of the graph vertices.

To illustrate the relevance of this analysis we then introduce structural clustering, an algo-

rithm that groups nodes according to the role they play in the graph. Then, we bound the

vertex-frequency concentration of graph filter banks atoms. Because of the irregular structure

of graphs, we construct a local uncertainty principle that is, again, driven by the norm of a
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localized kernel.

In the second part of the thesis, we tackle GSP problems from a machine learning perspective.

We use the localization operator to extend the notion of stationarity to graph signals. It consists

of a graph signal probabilistic framework allowing us to optimally solve inverse problems.

Finally, we show how the graph total variation can be used in semi-supervised learning and

prove its consistency with respect to the underlying graph manifold.

Key words: Graph, graph signal processing, spectral graph theory, semi-supervised learning,

stationarity, graph stationarity, graph probabilistic framework, graph uncertainty principle,

local uncertainty principle, structural clustering, clustering, graph total variation, manifold

regularization, supervised learning, graph learning, graph spectrogram, machine learning,

data science, graph structure
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Résumé

La haute dimensionnalité des données est un problème important en science des données

car une solution globale demande une quantité exponentielle de calculs et d’échantillons par

rapport à la dimension. Heureusement, les données possèdent aussi souvent une structure

interne qui limite leurs degrés de liberté et restreint drastiquement l’espace des solutions

possibles. Même si dans la plupart des cas, cette structure n’est pas directement accessible,

elle peut être approximée un utilisant un graphe, c.-à-d. un ensemble de nœuds connectés

par des arrêtes. En se fondant sur ce principe, les graphes ont été largement utilisés en ap-

prentissage semi et non supervisé où il est supposé que le signal varie lentement sur le graphe,

c.-à-d. que les nœuds connectés ont des valeurs similaires. Néanmoins, cette hypothèse est

insuffisante pour caractériser des relations plus complexes entre les données et leur structure.

Par exemple, lors d’un embouteillage, la vitesse des voitures oscille le long de la route et des

véhicules relativement proches peuvent avoir des vitesses significativement différentes.

Le traitement du signal sur graphe est un domaine de la science des données qui généralise

l’hypothèse traditionnelle de régularité à un concept plus général. Son idée principale est

de voir le signal comme une somme de modes harmoniques obtenus par la décomposition

spectrale du Lapacien. Cela permet de définir une transformée de Fourier et une notion de

filtrage sur graphe.

Malheureusement, contrairement au cas standard, les vecteurs propres du graphe ne s’étendent

pas uniformément sur les nœuds et peuvent être très concentrés sur une région du graphe.

De cette différence résulte l’absence d’opérateur de translation et, en conséquence, des prob-

lèmes pour généraliser certains concepts classiques comme la stationnarité, les principes

d’incertitude ou l’échantillonnage. Dans cette thèse, nous répondons à ces difficultés en

acceptant que chaque nœud est unique et doit être traité selon la structure de son voisinage.

Nous réalisons cet objectif en utilisant un operateur appelé localisation qui déplace un noyau

vers un nœud spécifique tout en s’adaptant à la structure locale du graphe autour de celui-ci.

Dans la première partie de la thèse, nous nous concentrons sur l’analyse harmonique en traite-

ment du signal sur graphe. Nous débutons en utilisant la norme des noyaux localisés pour

capturer les caractéristiques locales des nœuds du graphe. Afin de montrer la pertinence de

notre analyse, nous construisons un algorithme de clustering qui groupe les nœuds selon leur

ix



Acknowledgements

rôle dans le graphe. Ensuite, nous proposons une borne à la concentration vertex-fréquence

des atomes d’un banc de filtre sur graphe. En raison de la structure irrégulière du graphe, nous

construisons un principe d’incertitude local, qui est à nouveau conditionné par la norme d’un

noyau localisé.

Dans la deuxième partie de la thèse, nous prenons une perspective d’apprentissage automa-

tique. Nous utilisons l’opérateur de localisation pour étendre la stationnarité aux signaux sur

graphe. Le résultat est une théorie probabiliste qui permet de résoudre de façon optimale

des problèmes inverses. Enfin, nous montrons comment la variation totale peut être utilisée

en apprentissage semi-supervisé et nous démontrons sa convergence vis-à-vis de la variété

sous-jacente au graphe.

Mots clefs: Graphe, traitement du signal sur graphe, théorie spectrale des graphes, appren-

tissage semi-supervisé, stationnarité, stationnarité sur graphe, framework probabiliste pour

graphe, principe d’incertitude sur graphe, principe d’incertitude local, clustering structurel,

clustering, variation totale sur graphe, régularisation sur variété, apprentissage supervisé,

apprentissage sur graphe, spectrogramme de graphe, apprentissage automatique, science des

données, structure des graphes
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1 Introduction

The amount of captured data has grown drastically during the last decades bringing new

possibilities but also challenges for data science. One of the most prevalent ones is that

the dimensionality of the information, i.e., the number of degrees of freedom, has greatly

increased as well. Unfortunately, both the number of samples and the computations required

to model the entire space grow exponentially with the data dimensionality. Fortunately, in

general, the data possesses a strong intrinsic structure, which prevents it to span the entire

space. As a result, models do not need to be able to provide solutions for the whole space

but only need to consider the structured subspace on which the data lives. For example, a

classifier built from a digits dataset only needs to categorize deformed digits and not houses,

cars, trees or any other images.

A convenient way to express this assumption mathematically is to consider that the data

is sampled from a low-dimensional manifold embedded in a high-dimensional space. In

practice, as we only observe samples, the manifold is unknown and can at best be estimated.

Nevertheless, in many cases, we can utilize a graph (a set of nodes called vertices connected by

edges) to approximate its structure and its operators. For example, as illustrated in Figure 1.1,

following the graph edges allows us to estimate the manifold geodesic distances.

A graph is usually acquired in two different ways. First, it may be built using the data itself.

In point clouds for instance, we typically connect the nearest samples. In this setting, it

has been proven that the most important graph operators converge toward their manifold

equivalent [9, 8]. Second, the graph may come naturally with the data. In traffic signals for

example, cars are forced to follow roads and to circulate in specific directions. As a result,

a graph can be defined directly from the road network. Another example is the activation

patterns of brain signals that follow the cerebral neurons.

Graph structures have been exploited by the machine learning community in mainly three

different directions. First, in unsupervised learning, where the objective is to automatically

group/cluster similar samples, graphs can be used to approximate the manifold geodesic

distance (see Figure 1.1) and allows us to partition the samples in an embedded space [131,

1



Chapter 1. Introduction

Figure 1.1 – On the left, we are given random samples from the manifold displayed in gray.
We show the Euclidean distance in green and the geodesic distance in blue. On the left, we
construct a graph by connecting a sample to its nearest neighbors. Following the graph edges,
we can approximate the geodesic distance.

132]. Second, in semi-supervised learning, where one tries to infer missing information/labels

given the available ones, the graph inserts the structure contained in the unlabeled samples

and improves substantially the quality of the prediction [7, 122]. Finally, in a recommender

system, graphs are used to transfer pieces of information between similar profiles or items [55].

This thesis argues that most of these algorithms are based on the same hypothesis: “similar

samples are connected together and have analogous labels,” i.e., that the label function

fluctuates slowly along the graph edges. Problematically, this assumption may prove to be

insufficient in many cases. Consider the example presented in Figure 1.2, where the goal is to

predict the color of the center node. If we only look at the neighbors of the center node and

assume that the signal changes slowly, the value assigned would be yellow. However, an overall

observation of the signal’s oscillating behavior naturally suggests that the hidden color is red.

One promising way to overcome this issue is to use different hypotheses to regularize graph

signals. For example, in a traffic jam, the car velocity has an oscillating behavior in function of

the road position and additionally nearby cars can drive with significantly different speeds. If

the road is assumed to be a one-dimensional manifold, the car speed can be modeled as a

sum of oscillating functions in a well-specified frequency band.

Graph Signal Processing (GSP) is designed to handle and unify all these cases under the

comprehensive hypothesis that the data/signal depends on the graph structure.

Similarly to classical signal processing where the signal is seen as a sum of frequency compo-

nents, the fundamental idea of GSP is to view the signal as a sum of harmonic modes which

are obtained from the eigen-decomposition of the graph Laplacian L. This interpretation is

justified by the following facts. First, the Laplacian corresponds to the second order derivative,

which can classically be used to define Fourier modes. Second, we recover the traditional

graph Fourier transform when a ring graph is used (see Section 2.2.1). And third, the Laplacian

eigenvectors converge toward the Fourier mode of the underlying manifold [9]. In practice, if

we denote the eigendecomposition of L as L =UΛU∗, the orthonormal matrix U is considered

2



Figure 1.2 – Which color should the center node be labeled? The nearest neighbor approach
leads to the color yellow. On the contrary, the spectral approach developed by graph signal
processing leads to the color red.

as the graph Fourier basis and the diagonal matrix Λ as the graph squared frequencies (or

pulsations) [114]. As a result, the graph Fourier transform reads x̂ =U∗x .

This spectral approach plays a prominent role in GSP and generalizes previous machine

learning techniques. For example, the classical way to employ a graph in a semi-supervised

learning algorithm is to regularize the signal x using a Sobolev norm on the graph, i.e., the

norm of the gradient on the graph. This quantity is expressed as the sum of the signal variations,

‖∇x‖2 =
N∑

i=1

N∑
n=1

W [i ,n] (x[n]−x[i ])2 , (1.1)

where W is the weight/connectivity matrix and ∇ the gradient on the graph [122]. In GSP, we

usually observe the same quantity with a spectral point of view, i.e.,

‖∇x‖2 =∑
`

λ`x̂2[`], (1.2)

where λ` is the eigenvalue corresponding to the spectral component x̂[`]. It can be seen

that (1.2) penalizes the spectral component of the signal x̂[`] linearly with respect to the graph

eigenvalues λ`. While both quantities (1.1) and (1.2) are equivalent, (1.2) has an interesting

signal processing interpretation: it represents a high pass filter. This suggests that, if the signal

x belongs to a specific frequency band, we can change the frequency regularization weights to

another band-cut function h [82, 138], i.e.,

‖h(L)x‖2 =∑
`

h2(λ`)x̂2[`]. (1.3)

For example, if we search for a low-frequency signal in Figure 1.2, i.e., using (1.1) or (1.2) as

a penalization, we obtain a yellow label. On the contrary, if we search for a high-frequency

signal using (1.3) with h(λ) = 1
1+λ , we recover the red label.
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Chapter 1. Introduction

The spectral approach adopted by GSP allows to generalize important tools of traditional

signal processing. Filtering is obtained by weighting the signal in the Fourier domain [114] and

transformations such as the wavelets transform can be constructed by aggregating different

filters [52]. This being said, besides these similarities with traditional signal processing, GSP

also has two counterintuitive discrepancies.

• First, as illustrated in Figure 1.3, the Laplacian eigenvectors do not spread uniformly

over the graph nodes and some Fourier modes can be highly localized on a particular

set of vertices. As a consequence, an operation targeting a filtering operation can affect

a part of the graph vertices [89].

Figure 1.3 – Eigenvector localization. In a random geometric graph, the eigenvectors associated
with the lowest eigenvalues span all vertices, while the ones associated with the highest
eigenvalues are generally localized around a set of nodes (The graph contains N = 100 vertices
and has eigenvalues λ1 = 0.0044, λ2 = 0.0174, λ49 = 2.0709, λ50 = 2.0836, λmax = 4.7515).

• Second, the eigenvalues are irregularly spaced. As such, compared to the classical case,

there is in general no obvious relation with a period of oscillation of the corresponding

Fourier mode. As a result, the same filter may have a completely different effect on two

different graphs.

The challenges of GSP are consequences of these differences. From a computational point of

view, the irregular structure of the graph Fourier basis hinders an efficient implementation

of the Fourier transform. Essentially, an explicit computation requires the diagonalization of

the Laplacian, which has a cubic complexity with respect to the number of vertices. From a

theoretical point of view, there exists no translation operator for graphs. Hence, traditional

signal processing operations and transforms are often complicated to generalize to the graph

setting, e.g., stationarity, uncertainty principles and sampling theorems.

We posit that the key idea to overcome these issues lies in accepting that the translation
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1.1. Thesis outline and contributions

operator is not necessary on graphs. By nature, the local structure of the graph changes from

node to node. As a result, we argue that each node should be treated differently according

to its surrounding topology. This is exactly the motivation behind the localization operator

defined as

T G
i g :=U g (Λ)U∗δi ,

which adapts the kernel g , defined in the spectral domain, to the graph structure around

the vertex vi (see for example Figure 1.4). Localization can be viewed as a weaker version of

translation, because the localized kernels can be interpreted as shifted versions of each other

(see Chapter 3.1). However, contrarily to the traditional translation that preserves both the

shape and the energy of the signal, the localization by adapting to the irregular graph structure

does not. Nevertheless, in our perspective we consider this behavior as a way to deal with the

irregular graph eigenvector spreading.

Figure 1.4 – The heat kernel localized in 3 different vertices. The localization operator adapts
the kernel to the graph structure.

Within this context, the contributions of this thesis are oriented in two main directions. First,

we study the foundations of graph signal processing and show how the localization operator

can be leveraged to handle the irregular graph structure (Chapters 3, 4 and 5). Second, we

provide new algorithms and consistency results for semi-supervised learning (Chapters 5

and 6).

1.1 Thesis outline and contributions

The first three chapters of the thesis focus on studying the foundations of GSP harmonic

analysis. In Chapter 2, we introduce GSP with a special emphasis on how it generalizes the

classical case. This approach provides a natural motivation for the harmonic decomposition
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Chapter 1. Introduction

of the Laplacian. Moreover, we present two efficient methods to filter graph signals without

diagonalizing the Laplacian. These techniques are essential for the scalability of the algorithms

presented in this thesis. Each of the next three chapters leverages, with a different perspective,

the localization operator to handle the irregular graph structure.

Chapter 3: After introducing the localization operator in detail and describing its main prop-

erties, we focus on the correlation between the norm of a localized kernel and the irregular

spectral structure of a graph. It turns out that this norm is a convenient tool to access the

locality of the graph Fourier eigenvectors. Based on this property we introduce the graph

spectrogram, a transform assigning to each node a feature vector depending on its spectral

content. This leads us to propose structural clustering, an algorithm that classifies the nodes

according to their role in the graph, i.e., the local structure around them.

Chapter 4: We further investigate some of the fundamental limits of GSP filter banks. Due to

the irregular eigenvector spreading, the atoms of a vertex frequency transform [117] are not

translated versions of each other and can have very different shapes and concentrations. Again,

the norm of the localization operator appears as the prominent factor of the concentration

bound. As shown by Lieb [64], the classical uncertainty principles provides a global bound

that applies to the signal, regardless of its time-frequency localization. On the contrary, when

it comes to graph signals, the bound evolves depending on its vertex-frequency localization.

Driven by this concept, we introduce the notion of local uncertainty principles. We conclude

the chapter by demonstrating how our proposed local uncertainty measures can improve the

random sampling of graph signals.

In the last two chapters, we develop GSP from a more machine learning point of view. Our

analysis focuses on how graphs can be used in semi-supervised learning problems.

Chapter 5: We leverage the localization operator by generalizing the notion of Wide Sense

Stationarity (WSS) to graph signals. Given a temporal signal, WSS is an assumption on the

first two moments of a signal stating that both are invariant with respect to time, namely: 1)

the signal expectation is constant over time and 2) the correlation between instants t1 and t2

depends only on a single function applied to the difference t2−t1. Similarly, Graph Wide Sense

Stationarity (GWSS) is an assumption on the first two moments of a graph signal, namely 1)

its expectation is constant over the vertex set and 2) its correlation between the vertices vi

and vn is obtained through the localization of a single kernel γ called Power Spectral Density

(PSD), i.e., for a zero mean signal E[x[i ]−x[n]] = T G
i g [n]. After describing the properties of

stationarity, we introduce efficient tools for model estimation and process recovery of graph

signals. In particular, we construct a scalable method that estimates the PSD from a graph

signal, and we build a general estimator to solve inverse problems involving stationary signals.

Chapter 6: In a semi-supervised learning context, graphs are also a predilection tool to intro-

duce unlabeled samples in a learning algorithm because they give access to the underlying

data structure (the manifold). Typically, this is done by searching for a function in a Reproduc-
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ing Kernel Hilbert Space (RKHS) that not only fits the labeled points, but that is also slowly

varying on the graph [7, 9]. In Chapter 6, we generalize this concept to piecewise constant

functions by leveraging the graph total variation, i.e., the `1-norm of the gradient. To justify

our method, we prove that the total variation of the graph signal converges toward the total

variation of the function on the underlying manifold when the number of samples tends

toward infinity.

The thesis concludes in Chapter 7 where we propose future research directions and give some

considerations on GSP.

Contributions by order of appearance

• We propose a new scalable graph filter algorithm using Lanczos method.

• We define a new transform for graphs assigning to each node a feature vector character-

izing the local structure surrounding it.

• We construct a structural clustering algorithm that classifies graph vertices according to

their role in the graph.

• We build several uncertainty principles bounding the vertex-frequency concentration

of graph filter banks.

• We show that the vertex-frequency concentration of a graph filter bank atom depends

on its vertex-frequency localization and hence propose a local uncertainty principle.

• We generalize the notions of stationarity, Power Spectral Density (PSD) and Wiener

filters to graph signals.

• Given a graph signal, we propose and characterize a scalable estimator for the PSD.

• In the context of probabilistic graph signal processing, we present a novel regularization

scheme that is proven to be optimal for graph stationary signals and provide a scalable

implementation for standard inverse problems.

• We propose a new semi-supervised learning scheme for piece-wise constant functions

using the graph total variation.

• We prove the convergence of the graph total variation toward its manifold equivalent.
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Part IHarmonic analysis in graph signal
processing
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2 A gentle introduction to graph signal
processing

2.1 First steps into graph signal processing

Let us start with an introduction to Graph Signal Processing (GSP), where we give a formal

definition to the different objects used in this thesis.

2.1.1 Graph nomenclature

A graph consists of two sets V ,E and optionally a weight function. V is the set of vertices

that represent the nodes of the graph. E is the set of edges that connects two nodes if there

is a particular relation between them. To obtain a finer graph structure, this relation can be

quantified by a weight function W : V ×V → R that reflects to what extent two nodes are

related to each other. A graph is therefore tuple G = {V ,E ,W }. For simplicity, we will restrict

ourselves to undirected, connected and weighed graphs. Nevertheless, some of the definitions

and tools presented in this thesis have been extended to directed graphs [21, 22, 140] and

hypergraphs [141]. The vector/matrix terminology happens to be very convenient for graphs.

Let us index the nodes from 1,. . . , N = |V | and construct the weight matrix W by setting

W [i ,n] = W (vi , vn) as the weight associated to the edge connecting the node i and the node

n. If no edge exists between i and n, the weight is set to 0.

The weight function W is in general custom-made for each application. In the case where the

data is a collection of N features vector ci in RM , there are three typical schemes to create a

graph.

Graph 1 (Weighted point-cloud graph). Given a set of N points with coordinates {ci }i=1,···N
and a kernel k :RM ×RM →R+, a weighted point-cloud graph is a graph where each point ci is

associated to a vertex vi and the weight function W satisfies W (vi , vn) = k(ci ,cn). In general,

the kernel k is a decreasing function of the distance between the points ci and cn . The most

typical case is the Gaussian kernel

k(ci ,cn) = e−
‖ci −cn‖2

2
σ2 .
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Chapter 2. A gentle introduction to graph signal processing

Graph 2 (k-nearest neighbors graph). Given a set of N points with coordinates {ci }i=1,···N , a

k-Nearest Neighbors (k-NN) graph is a graph where each point ci is associated to a vertex vi

and two nodes vi and vn are connected if ci is in the k-nearest neighbors of cn or if cn is in the

k-nearest neighbors of ci . The weight associated to each edge is 1. In the literature, typical

values for k range from 6 to 10.

Graph 3 (Weighted k-NN graph). A weighted k-NN graph is a k-NN graph with a non-unitary

weight associated to the edges. In this thesis, we use in most of the case a Gaussian kernel

k(ci ,cn) = e−
‖ci −cn‖2

2
σ2 ,

where σ is set to the average of the distances between k-NN points.

A particularity of GSP is that the graph is the domain and the signal (the information) resides

on it.

Definition 1 (Graph signal). A signal is defined as a function x : V → R assigning one value

to each vertex. For convenience, we consider a signal x as a vector x of size N with the nth

component representing the signal value at the nth vertex, i.e., x(vn) = x[n].

While we work in R, almost all results can be extended to C. We now generalize straightfor-

wardly some classical concepts.

Definition 2 (Graph scalar product). The scalar product of two graph signals x and y:

〈x, y〉V =
N∑

n=1
x(vn)y∗(vn) =

N∑
n=1

x[n]y∗[n] = y∗x = 〈x , y〉R|V | (2.1)

where y∗ is the complex conjugate transposed of y .

For convenience, we abusively say that x is a graph signal and use only this notation. We will

additionally not use the subscript for the scalar product, but the reader should always keep in

mind the equivalence presented above.

Definition 3 (Degree of a vertex). Given a node vi ∈ V , its degree d(vi ) = d [i ] is defined as the

sum of the weights of the connected edges, i.e., d =W 1 or

d(vi ) =
N∑

n=1
W (vi , vn).

The degree somewhat measures the connectivity of each node of the network. Nodes with

a low degree are more isolated. Figure 2.1 shows the node for a sensor network graph, i.e., a

random geometric graph.
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2.1. First steps into graph signal processing

Example 1 (Geometric sensor network). Let us suppose that some sensors are distributed

uniformly at random over a given area. Each of them records some data. We can model this

network with a graph where the vertices represent the sensors and the edges represent physical

proximity. In this case, the signal associated to each vertex is the value returned by the sensor.

We use a special type of graph to model this process that we refer to as sensor graph

Graph 4 (Sensor graph). A sensor Graph is a random geometric sensor network generated as

follows. First the coordinates of the N points are drawn uniformly from the plane unit square

[0,1]× [0,1]. Then the weighted k-NN scheme of Graph 3 is used to connect the vertices. An

example is displayed in Figure 2.1.

Figure 2.1 – Geometric sensor graph. The color on the node represents the value of the signal
on the graph: here the degree.

On a graph, the notion of distance has to be redefined and several possibilities exist, i.e., the

resistance distance [57], or the diffusion distance [61]. A very elementary one is the length of

the shortest path that we refer as hop distance.

Definition 4 (Graph Path). A graph path is a set of vertices (v1, v2, ..., vp ) with the property that

[vi , vi+p ] ∈ E for 1 ≤ i ≤ p −1. The length of a path is defined as the cardinality of the path set

minus one.

From the definition of graph path, we now derive a notion of connected graph.

Definition 5 (Connected vertices and connected graph). We say that two vertices vi and v j

are connected if there exists a path such that v1 = vi and vp = v j .

A graph is connected if every vertex is connected to every other vertex.

As an example, the graph presented in Figure 2.1 is connected.

Definition 6 (Hop distance). The hop distance between vertices vi and vn : hG (vi , vn) is defined

as the length of the shortest path between them. If no path exists, then the hop distance is

infinite.

2.1.2 Gradient and Laplacian

In GSP, the most fundamental operator is the graph Laplacian. Let us start by presenting the

discrete combinatorial Laplacian operator in the classical case. Let x be a discrete signal.
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The gradient is usually defined as ∇d x[i ] = x[i +1]−x[i ], which is the finite difference of two

consecutive values. In this case, the divergence operator (adjoint of the gradient) becomes

divd x[i ] = x[i −1]−x[i ]. Using theses definitions, the discrete Laplacian becomes

(∆d x) [i ] = (divd∇d x) [i ]

= ∇d x[i −1]−∇d x[i ]

= 2x[i ]−x[i −1]−x[i +1] (2.2)

A similar procedure is used for the graph case. In fact, the construction of the Laplacian

operator for graphs generalizes the classical discrete Laplacian. It acts as a second order

derivative and is defined as:

L := divG∇G , (2.3)

where divG and ∇G are the divergence and the gradient1 defined on the graph. We emphasize

that the final formulation of the Laplacian is dependent of the definition of the gradient ∇G . We

illustrate the process in this section. To get more details about those computations, we invite

the reader to read [49, 35].

Gradient of a graph signal: For our derivations, we chose to define the combinatorial gradient.

However other definitions are widely used such as the normalized gradient.

Definition 7 (Edge-derivative). For a signal x : V → R, the edge derivative is an application
∂x
∂e

: E →R defined as:

∂x

∂ei ,n
=

√
W (vi , v j ) (x(vn)−x(vi )) =

√
W [i ,n] (x[n]−x[i ]) (2.4)

The term (x[n]−x[i ]) is the finite difference between the values at two adjacent vertices. The

term
p

W [i ,n] weights those finite differences. When two nodes are strongly connected (i.e.,

close), then the weight increases the derivative. On the contrary if the two nodes are weakly

connected (i.e., far away), the weight decreases the derivative. The gradient of a graph signal x

groups all edge derivatives into a linear operator ∇G :R|V | →R|E | defined as:

y =∇G x =
[
∂x

∂e

]
e∈E

. (2.5)

Divergence of an edge signal: The divergence of an edge signal is defined as the adjoint of the

gradient operator on graphs. For a vertex signal x and an edge signal y , it satisfies:

〈∇G x , y〉R|E | = 〈x ,divG y〉R|V | . (2.6)

1When the graph is unweighted, the linear operator associated to the gradient is simply the incidence matrix.
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Using this relationship, the divergence operator divG y : R|E | → R|V | is defined as the linear

operator:

(
divG y

)
[n] = 1

2

∑
i

√
W [i ,n]y[i ,n]−

√
W [n, i ]y[n, i ] (2.7)

The details of computations can be found in Appendix A.1.

From definition (2.3) and the definitions of the gradient and the divergence, we now derive

the expression of the combinatorial Laplacian operator L :R|V | →R|V | as

L = divG∇G = D −W , (2.8)

where D is the diagonal degree matrix (with diagonal entries D[i , i ] = d [i ]). The derivation

details are given in Appendix A.2. In this thesis we use the notation L for both the Laplacian

operator and its associated matrix.

Example 2 (Laplacian of the “ring” graph). On the “ring” graph (see Figure 2.4 left and Graph 6),

every node is connected to its left and right neighbors. The resulting weight matrix is

W [i ,n] =



1 if |i −n| = 1

1 if i = 1, and n = N

1 if i = N , and n = 1

0 otherwise.

From the weight matrix the Laplacian is computed as

L[i ,n] =



−1 if |i −n| = 1

−1 if i = 1, and n = N

−1 if i = N , and n = 1

2 if i = n

0 otherwise.

This expression matches the classical discrete Laplacian of (2.2).

The “ring” graph is very important in graph signal processing as it makes the connection

between traditional and graph signal processing. We detail this case in Section 2.2.1.

Other Laplacian definitions: Other Laplacian definitions are widely used in practice. The

most common alternative is the normalized Laplacian:

L′ = D− 1
2 LD− 1

2 = D− 1
2 (D −W )D− 1

2 = I −D− 1
2 W D− 1

2 . (2.9)

15



Chapter 2. A gentle introduction to graph signal processing

Using this definition, each edge is re-weighted such that the degree of each node is 1. In

this case, the spectrum of the Laplacian is bounded by 2. The choice of the Laplacian highly

depends on the application and, unfortunately, there is no rule to tell which one should be

used in any given situation.

The results presented in this thesis are independent of the Laplacian definition and only

require a SPSD operator. Furthermore, they can be used with directed graphs [140, 22, 21]

and hypergraphs [141]. Independently of the chosen edge derivative definition (provided it

is linear), the graph Laplacian will be, by construction, a symmetric positive semi-definite

operator. We thus build a unified graph spectral theory that applies to all of these cases.

2.2 Spectral graph theory

The spectral theory of graphs is a generalization of the classical case. Let us start by reminding

some of the classical properties of the continuous case. For L2 continuous functions, the

derivative in the time domain is equivalent to a multiplication in the Fourier domain, i.e.,

∇̂ f (ω) = jω f̂ (ω), (2.10)

where ∇ f (x) = ∂ f
∂x (x). From this relation, we find a special expression for the second order

derivative,2 i.e., the Laplacian, as

�∇∗∇ f (ω) =�∆L f (ω) =ω2 f̂ (ω), (2.11)

where ∆L =∇∗∇=− ∂2

∂x2 . Equation (2.11) highlights the link between the Laplacian operator

and the Fourier transform because it implies two different things:

• the eigenfunctions of the Laplacian are the Fourier modes,

• the Laplacian eigenvalues correspond to the squared pulsations.

A similar analysis can be done for the discrete case where the discrete Fourier eigenvectors are

also the eigenfunctions of the discrete Laplacian (2.2).

This idea is also used to define the graph Fourier basis. In the graph case, the Laplacian L is, by

construction, a symmetric positive semi-definite operator. Thus, from the spectral theorem, it

possesses a complete set of orthonormal eigenvectors U and can be written as:

L =UΛU∗, (2.12)

whereΛ is a diagonal matrix containing the Laplacian eigenvalues. U is considered to be the

graph Fourier basis and the graph Fourier eigenvectors are denoted by {u`}`=0,1,...,N−1. The

eigenvalues somehow represent the squared pulsation, i.e., how much the eigenvectors do

2In turns out that the adjoint of the gradient, called divergence is div f (x) =∇∗ f (x) =∇ f (x). This can follows
trivially from (2.10).
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oscillate on the graph. For convenience, and without loss of generality, we order the set of

eigenvalues increasingly: 0 ≤λ0 ≤λ1 ≤λ2 ≤ ... ≤λN−1 =λmax. This ordering associates slow

pulsation with low indexes.

Connected graphs have exactly only one zero eigenvalue (pulsation/frequency) corresponding

to the constant eigenvector (for the combinatorial Laplacian). Furthermore, it has been

proven that the multiplicity of the zero eigenvalue is equal to the number of connected

components [23]. In that case, there is no connections between the different connected

components and in GSP they are usually handled independently.

Graph 5 (Path). Let us illustrate this spectral decomposition with an example. A “path” is a

graph where all nodes are connected to their two neighbors except the first and the last one, i.e.,

W [i ,n] =
1 if |i −n| = 1

0 otherwise.

Example 3 (Eigenvectors of the “path” graph). Figure 2.2 displays the first six eigenvectors, i.e.,

the eigenvectors associated to the lowest pulsation / frequency. As the eigenvalues increase, they

naturally oscillate more. In fact, it has been proven in [125] that the basis of the path graph is a

discrete cosine basis. This basis is largely used in image processing in order to handle border

effects.

Figure 2.2 – First eigenvectors of the path graph (20 nodes).

Definition 8 (Graph Fourier transform). The graph Fourier transform x̂ ∈ RN (or ∈ CN ) of a

function x ∈ RN (or ∈CN ) defined on a graph G is the projection onto the orthonormal set of

eigenvectors {u`}`∈[0,N−1] of the graph Laplacian associated with G , i.e.,

x̂[`] := 〈 f ,u`〉 =
N∑

n=1
x[n]u∗

` [n], ` ∈ [0, N −1] or x̂ =U∗x . (2.13)
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Conversely, since {u`}`=0,1,...,N−1 is an orthonormal basis, the inverse Fourier transform is

x[n] =
N−1∑
`=0

x̂(`)u`[n], n ∈ [1, N ], or x =U x̂ . (2.14)

For any symmetric positive semidefinite matrix, there exists an infinite number of orthonor-

mal eigenvectors bases. However, if the spectrum of the Laplacian has no eigenvalue with

multiplicity, only one is entirely real. For convenience, we will, in that case, always choose that

one. The definition of the Fourier transform possesses different properties described in [117].

For example, the Parseval relation holds for graphs:

〈x , y〉 = 〈x̂ , ŷ〉. (2.15)

The spectrum of the Laplacian replaces the squared pulsation (squared angular frequency) and

is used as coordinates in the Fourier domain. However, compared to the classical frequencies,

Laplacian eigenvalues are not regularly spaced and the eigenvalue distribution depends on

graph characteristics.

Motivation of the Fourier definition Beside the classical analogy presented at the beginning

of this section, there is another motivation to define the Fourier basis as the eigenvectors of

the graph Laplacian. For a signal x , the normalized norm of its gradient
‖∇G x‖2
‖x‖2

is a measure of

how much the signal varies on the graph. If we were to seek for the k th orthogonal less varying

signals on the graph, we would solve the following problem:

xk = argmin
x⊥x`∀`<k

x∗Lx

‖x‖2
2

. (2.16)

Indeed, by definition of the Laplacian, we have(∥∥∇G x
∥∥

2

‖x‖2

)2

= 〈∇G x ,∇G x〉
‖x‖2

2

= 〈x ,divG∇G x〉
‖x‖2

2

= x∗Lx

‖x‖2
2

In practice for “regular graphs”3 like rings, grids, or paths, the Fourier modes are intuitively the

oscillating modes for given frequencies [114, 117]. A very important property of those modes

is the fact that the higher the eigenvalue, the more the mode oscillates. As a consequence,

high eigenvalues are associated to high frequencies and low eigenvalues correspond to low

frequencies.

Example 4. In Figure 2.3, we present an example of low order oscillating modes of the sensor

graph presented in Figure 2.1. Since we use the combinatorial Laplacian, the first eigenvector is

always constant. The second eigenvector looks like a wave (or a sinus) on the graph. The tenth

eigenvector is still more or less smooth but has a lot of local minima and maxima.

3Informally, the graph regularity can be seen as how much the topology of the graph varies from one node to
another.
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2.2. Spectral graph theory

However, when the graph structure is “less regular” (with isolated vertices or groups of highly

connected vertices), the Laplacian spectrum can differ greatly from the notion of frequency.

Some Fourier modes can be highly concentrated, hence close to elements of the canonical basis.

This will be studied in more detail in Chapter 4.

Figure 2.3 – Example of eigenvectors on a sensor graph. The first eigenvector represents the
DC component of the graph. The larger the eigenvalue associated to the graph, the more the
eigenvector oscillates (N = 64,λ0 = 0,λ1 = 0.0488,λ3 = 0.0996,λ9 = 0.4198 andλmax = 3.8281).

As we shall see in Sections 3 and 4, some of the graph spectral eigenvectors may be localized

in small subsets of vertices. One simple way to know if a graph contains localized eigenvectors

is to look at the modulus of the graph Fourier eigenvectors.

Definition 9 (Graph Fourier Coherence µG ). Let G be a graph of N vertices. Let {δi }i∈{1,2,...,N }

denote the canonical basis of `2(CN ) of Kronecker deltas and let {u`}`∈{0,1,...,N−1} be the orthonor-

mal basis of eigenvectors of the graph Laplacian of G . The graph Fourier coherence is defined

as:

µG := max
i ,`

|〈δi ,u`〉| = max
i ,`

|u`[i ]|.

2.2.1 Generalization of the classical case

It turns out that many traditional Fourier transforms correspond to particular graphs.

• The Discrete Fourier Transform (DFT) corresponds the “ring” graph.

• The Discrete Cosine Transform 2 (DCT-2) corresponds to the “path” graph.

• The two dimensional DCT corresponds to the “grid” graph.

• The two dimensional DFT corresponds to the “torus” graph.
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Chapter 2. A gentle introduction to graph signal processing

These graphs are displayed in Figure 2.4. Strang has demonstrated in [125] the unidimensional

DFT and DCT cases. The two dimensional cases are obtained through the application of [73, 74,

Theorem 2.21].

Figure 2.4 – Graphs corresponding to classical Fourier transform. The path and the grid
correspond to the DCT. The ring and the torus correspond to the DFT.

The ring graph

The ring graph plays a central role in Graph Signal Processing (GSP) because it allows us to

consider some results as extension from the classical framework. More precisely, we will show

some equivalence between the ring graph and discrete periodic case. While we index the

nodes from 1 to N , we sometimes use the index 0 for the node N .

Graph 6 (Ring graph). The weight matrix of a “ring” graph is defined as follow:

W [i ,n] =



1 if |i −n| = 1

1 if i = 1 and n = N

1 if i = N and n = 1

0 otherwise.

It encodes the fact that each vertex is linked to its two neighbors. The circularity is obtained by

connecting the first and the last nodes.
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2.2. Spectral graph theory

In this special case, the degree matrix becomes D = 2I and the Laplacian reads:

L =



2 1 1

1 2 1

1
. . .

. . .
. . . 2 1

1 1 2


(2.17)

Since this matrix is circulant, first the complex exponentials (for `= 0, . . . , N −1)

u`[n] = 1p
N

exp

(
2π j

`n

N

)
, (2.18)

where j =p−1, form a valid set of eigenvectors, and second the corresponding eigenvalues

are given by

λk = 2−2cos

(
2π

nk

N

)
. (2.19)

Details on this computation can be found in the work of Strang [125]. Since many eigenvalues

have multiplicity 2, other eigenvectors systems are possible. Additional insights on this topic

can be found in [125, 49, 127].

Eigenvalues reordering

In GSP the convention is to order the eigenvalues in ascending order. In this paragraph,

we derive the corresponding formulas and show the effect of this spectral folding. For ` =
0, . . . N −1, the eigenvalues in increasing order are given by

λ` =
2−2cos

(
π`
N

)
if ` is even,

2−2cos
(
π(`+1)

N

)
if ` is odd.

(2.20)

Except for ` = 1 and for ` = N (when N is even) all eigenvalues have a multiplicity of 2.

Furthermore the associated eigenvectors are the complex exponentials of the Discrete Fourier

Transform (DFT). Following the ordering of the graph eigenvalues they are given for n = 1. . . N

as

u`[n] =


1p
N

exp
(
π j `n

N

)
if ` is even,

1p
N

exp
(
π j (2N−`−1)n

N

)
if ` is odd.

(2.21)

Up to a reordering, this is exactly the eigenvector basis of the DFT (2.21). As shown in Figure 2.5,

this reordering corresponds to flipping the negative frequencies around the Nyquist frequency.

When we use the graph Laplacian operator, we lose the notion of negative and positive

frequencies as only their squared modulus matter.
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Chapter 2. A gentle introduction to graph signal processing
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Figure 2.5 – 20-ring graph. Left: one graphical representation. Center: eigenvalues plotted with
in classical order, i.e., (2.19). Right: eigenvalues plotted in ascending order, i.e., (2.20). Con-
sidering the eigenvalues in ascending order is equivalent to flipping the negative frequencies
around the Nyquist frequency.

2.3 Graph filters

The graph Fourier transform plays a central role in GSP since it help us to extend the filtering

operations to graph signals. In the classic setting, applying a filter on a signal is done with a

convolution, i.e., a point-wise multiplication in the spectral domain. Similarly, filtering a graph

signal is defined through a multiplication in the graph Fourier domain. There are two ways to

define graph filters: (a) one can simply assign a coefficient to each eigenvalue, or (b) one can

define a continuous function g :R+ →R in the graph Fourier domain and then compute the

discrete coefficients by evaluating the function at each eigenvalue. In this work, we mostly

work with the second method. For g :R+ →R and x ∈RN , the filtered signal y satisfies, in the

graph spectral domain

ŷ[`] = g (λ`) · x̂[`], or ŷ = g (Λ)x̂ ,

where g (Λ) is a diagonal matrix with g (Λ)[`,`] = g (λ`). In the vertex domain, this expression

becomes

y[n] =
N−1∑
`=0

g (λ`)x̂[`]u`[n] =
N∑

i=1
x[n]

N−1∑
`=0

g (λ`)u∗
` [i ]u`[n], or y = g (L)x , (2.22)

where g (L) =U g (Λ)U∗.

Since small eigenvalues correspond to low frequencies and conversely high eigenvalues to

high frequencies, filters can thus be designed to select a frequency band.

Example 5 (Low pass filtering on graph). Using a low pass filter, we can de-noise a signal on the

graph. In Figure 2.6, we present an example of such an operation. Let us suppose that the signal

on each node is the value returned by an inaccurate sensor that measures the temperature. Since

we know that the temperature varies smoothly in space, we assume that the final temperature

distribution on the graph is smooth (low-frequency) as well. To remove the noise, we thus apply

a low-pass filter that removes high-frequencies.
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2.3. Graph filters

Figure 2.6 – Example of a low pass filtering operation. Fast variation between the nodes are
removed while the slow variation are kept.

2.3.1 Filterbanks

Many transforms like the wavelets or the short time Fourier transform are based on multiple

filters gk .

Definition 10 (Graph filter bank). A graph filter bank is a sequence of kernels (or filters) g =
{g1, g2, . . . , gK }, where each gk : [0,λmax] → C is a function defined on the graph Laplacian

spectrum [0,λmax] of a graph G .

In Section 4, we sometimes index filter banks from 0 to K −1. The transforms associated to a

filter bank are called analysis and synthesis. They consist in applying all filters to the signal.

Definition 11 (Analysis operator). The analysis operator of a graph filter bank g = {g1, . . . , gK }

applied to a graph signal x ∈CN is given by

Agx[·,k] := gk (L)x .

Also we use a double indexes notation, c = Agx is in general considered as a vector ∈ CK N

which is a redundant representation of x . The linear operator Ag can be thought of as a matrix

of size K N ×N .

Definition 12 (Synthesis operator). The synthesis operator of a graph filter bank g = {g1, . . . , gK }

applied to a graph signal representation c ∈CK N is given by

Sgx = Aᵀ
g c =

K∑
k=1

gk (L)c[·,k].

The synthesis operation is simply the adjoint operator of the analysis. Figure 2.7 shows a

simple representation of both operations.

We need a condition to warranty that c = Agx is a valid representation of x , i.e., that no

information is lost during the transformation.
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Chapter 2. A gentle introduction to graph signal processing

(a) Analysis operation (b) Synthesis operation

Figure 2.7 – Schematic representation of analysis and synthesis operation

Definition 13 (Graph filter bank frame). A graph filter bank g = {g1, . . . , gK } is a graph filter

bank frame if there exist constants A and B called the lower and upper frame bounds such that

for all x ∈CN :

A‖x‖2
2 ≤

∑
i ,k

|Agx[i ,k]|2 ≤ B ‖x‖2
2 .

If A = B, the frame is said to be a graph filter bank tight frame.

In practice, this condition can be easily verified from the filter bank g almost independently

from the graph G using the following lemma.

Lemma 1 ([115], Lemma 1). Let us consider the filter bank g = {g1, . . . , gK } and define

G(λ) :=
K−1∑
k=0

|gk (λ)|2, (2.23)

then the analysis operator Ag has lower and upper frame bounds given by

A = min
`∈0,···N−1

G(λ), and B = max
`∈0,···N−1

G(λ), (2.24)

respectively. If G(λ) is constant over λ`,∀` ∈ 0, . . . N −1 , then g is a tight frame.

Examples of graph filter bank frames include the spectral graph wavelets of [52], the Meyer-like

tight graph wavelet frames of [62, 63], the spectrum-adapted wavelets and vertex-frequency

frames of [115], and the learned parametric dictionaries of [128]. The dictionaries construc-

tions in [52, 115] choose the filters so that their energies are localized in different spectral

bands. Different choices of filters lead to different tilings of the vertex-frequency space, and

can for example lead to wavelet-like frames or vertex-frequency frames (analogous to classical

windowed Fourier frames). The frame condition of Lemma 1 ensures that these filters cover

the entire spectrum, so that no band of information is lost during analysis and reconstruction.
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2.4. Fast filtering via Chebyshev polynomials

2.4 Fast filtering via Chebyshev polynomials

The graph filtering operation described above is based on the graph Fourier transform. Un-

fortunately, the graph Fourier basis needed for performing this transform requires the diago-

nalization of the graph Laplacian, which takes O
(
N 3

)
operations and O

(
N 2

)
memory when

performed using standard techniques. This is feasible for graphs with only a few thousand

vertices. To be able to tackle problems of larger size, more efficient methods are needed. We

present here two possible methods of order O (|E |). The first one using Chebyshev polynomials

is presented in [52] and the second one using the Lanczos method is proposed in [126].4

2.4.1 Fast filtering via Chebyshev polynomials

Filtering in the vertex domain. To avoid the Fourier transform, we perform the filtering

operation in the vertex domain using only the Laplacian operator. Applying this operator

corresponds to multiplying the signal in the spectral domain with the eigenvalues:

L̂x =Λx̂ .

This is equivalent to filtering with g (λ) = λ. Using this relation recursively and exploiting

linearity, we can apply any polynomial filter g (λ) = a0 +a1λ+·· ·+aKλ
M to a signal x with the

following formula:

x ′ =U g (Λ)U∗x = (
a0I +a1L +·· ·+aM LM )

x . (2.25)

Chebyshev polynomial approximation. The ability to apply polynomial filters efficiently

suggests to approximate a given filter function with a suitable polynomial. For approximating

functions on real intervals, Chebyshev polynomials are usually the preferred choice because of

numerical stability considerations and the fact that they can be evaluated efficiently by three-

term recurrences. We refer to [52] for a more detailed discussion on the choice of Chebyshev

polynomials in signal-processing on graphs and to, e.g., [93] for an introduction to polynomial

approximation.

The mth Chebyshev polynomial Pm(y) is generated using the recurrence relation

Pm(y) = 2yPm−1(y)−Pm−1(y)

with P0(y) = 1 and P1(y) = y . For y ∈ [−1,1], these polynomials possess the following well-

known properties:

1. they admit the closed form expression Pm(y) = cos(m arccos(y));

2. they are bounded, i.e., Pm(y) ∈ [−1,1];

4Some parts of this section are slightly adapted version of [126].
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Chapter 2. A gentle introduction to graph signal processing

3. they form an orthogonal basis of L2
(
[−1,1], dyp

1−y2

)
.

The third property implies that every function h ∈ L2
(
[−1,1], dyp

1−y2

)
admits a convergent

Chebyshev series

h(y) = 1

2
c0 +

∞∑
m=1

cmPm(y),

with the Chebyshev coefficients

ck = 2

π

∫ 1

−1

Pm(y)h(y)√
1− y2

dy = 2

π

∫ π

0
cos(kθ)h(cos(θ))dθ.

Since our filter g is evaluated on the eigenvalues of the Laplacian, we need to map the interval

[−1,1] to the interval [0,λmax] using the transformation λ = λmax
2 (y +1). Defining T̃m(λ) =

Tm

(
2λ
λmax

−1
)

we obtain

g (λ) = 1

2
c0 +

∞∑
m=1

cmT̃m(λ) (2.26)

for λ ∈ [0,λmax], with

cm = 2

π

∫ π

0
cos(mθ)g

(
λmax

2
(cos(θ)+1)

)
dθ.

Fast filtering algorithm. At this point, we can derive the iterative algorithm for filtering a

signal x with g . The recurrence relation for the transformed Chebyshev polynomials becomes

P̃m(λ) = 2
(

2x
λmax

−1
)

P̃m−1(λ)− P̃m−2(λ). On the matrix level, this yields, using (2.25):

P̃m(L)x = 2

(
2L

λmax
− I

)
P̃m−1(L)x − P̃m−2(L)x .

Combined with (2.26), this finally leads to the following expression for filtering a signal x :

x ′ = g (L)x = 1

2
c0I x +

∞∑
m=1

cmP̃m(L)x .

When implemented, we truncate this sum at a defined order M . Assuming that |E | > N , the

computational cost of this algorithm scales linearly with the number of edges O (M |E |). In most

applications, the Laplacian is sparse, |E |¿ N 2, which results in a fast algorithm. Moreover,

apart from storing the Laplacian, the additional memory consumed by this algorithm is only

4N .
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2.4. Fast filtering via Chebyshev polynomials

2.4.2 Accelerated filtering using Lanczos

A direct polynomial approximation is not the only way to approximate a graph filter. Given the

graph Laplacian L ∈ RN×N and a nonzero vector x ∈ RN , the Lanczos method [48] shown in

Algorithm 1 below computes an orthonormal basis VM = [v1, . . . , vM ] of the Krylov subspace

KM (L, x) = span{x ,Lx , . . . ,LM−1x}. The computational cost of Algorithm is O (M · |E |). The

storage of the basis VM requires M N additional memory, which can be avoided using two

passes of the algorithm or restart techniques; see, e.g., [41] for more details.

Algorithm 1 Lanczos method

Input: Symmetric matrix L ∈RN×N , vector x 6= 0, M ∈N.
Output: VM = [v1, . . . , vM ] with orthonormal columns, scalars α1, . . . ,αM ∈R and β2, . . . ,βM ∈

R.
1: v1 ← x/‖x‖2

2: for j = 1,2, . . . , M do
3: w = Lv j

4: α j = v∗
j w

5: ṽ j+1 = w −v jα j

6: if j > 1 then
7: ṽ j+1 ← ṽ j+1 −v j−1β j−1

8: end if
9: β j =

∥∥ṽ j+1
∥∥

2
10: v j+1 = ṽ j+1/β j

11: end for

The scalars produced by Algorithm 1 can be arranged into a symmetric tridiagonal matrix

HM ∈RM×M satisfying

V ∗
M LVM = HM =



α1 β2

β2 α2 β3

β3 α3
. . .

. . .
. . . βM

βM αM


.

In floating-point arithmetics, the orthogonality of the basis produced by Algorithm 1 may get

quickly lost and reorthogonalization is needed [27].

Given a continuous function g : [0,λmax] →R and a vector s, the following approximation to

g (L)x was proposed by Gallopoulos and Saad in [43]:

g (L)x ≈ ‖x‖2 VM g (HM )e1, (2.27)

where e1 ∈ RM is the first unit vector. Because of eigenvalue interlacing, the eigenvalues of

HM are contained in the interval [0,λmax] and hence the expression g (HM ) is well-defined.
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Chapter 2. A gentle introduction to graph signal processing

Typically, we have M ¿ N , making the evaluation of g (HM ) inexpensive. The overall cost of our

Lanczos-based approximation of graph-signal filtering, which consists of applying Algorithm 1

and evaluating (2.27), is therefore between O (M · |E |) and O
(
M · |E |+M 2N

)
, depending on

how the reorthogonalization is performed.
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3 Structural clustering via the graph
localization operator

Convolution, stationarity, and many important transforms rely on the translation operator

“that shifts a signal without changing its shape.” For example, the wavelet transform is a

projection onto a collection of translated and scaled versions of a mother function.

In the effort to develop GSP tools, there have been multiple attempts to generalize transla-

tion [47, 117, 72]. As we show in Appendix B.1, none of them perform what one would naturally

expect for a translation, i.e., “moving some mass centered around one node to another while

preserving its global shape.” We believe that searching for a natural, well-defined translation

operator for graphs is not the best solution to tackle GSP problems as they do not require all

the properties reminiscent of the translation operator.

Instead, we can use a weaker version of translation that we call the graph localization operator

and that has the property to localize a kernel around a selected graph vertex while conserving

some global shape properties. In opposition to the classical translation both the signal shape

and the signal energy are not preserved. In this thesis, we value this behavior as it exhibits an

adaptation to the irregular structure of the graph and we believe that it should be leveraged

for the best.

The localization operator has many important implications in GSP and will in practice replace

translation. As we shall see, a) graph filters (Section 2.3) benefit from an alternative interpreta-

tion, b) localization can be used to extract local properties of the graph structure (this section),

c) it plays an important role in graph uncertainty principles (Section 4), d) it naturally extends

the notion of stationarity for graphs (Section 5), and e) it helps in the problem of sampling

(Example 20).

3.1 The localization operator

There have been multiple generalizations of the translation operator for graphs. They are

detailled in Appendix B.1. We concentrate here on the generalized translation for graph signals

defined by Shuman et al.. Leveraging the graph Fourier transform, they define translation as
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Chapter 3. Structural clustering via the graph localization operator

the convolution with a Kronecker delta [117, Equation 26]. The graph convolution ∗ being an

element-wise multiplication in the spectral domain.

Definition 14. For a graph signal x and a vertex i , the generalized graph translation operator

reads:

Ti x[n] := (x ∗δi )[n] =
N−1∑
`=0

x̂[`]u∗
` [i ]u`[n]. (3.1)

Unfortunately, the generalized translation operator does not perform what we would intu-

itively expect from it, i.e., it does not translate a signal x from node n to node i . Instead when

x̂ changes smoothly across the frequencies (Theorem 3), then Ti x is localized around node i ,

while x is in general not localized at a particular node or set of nodes.

The localization operator is very similar to the generalized translation but applies to a kernel

defined in the graph spectral domain.

Definition 15. Let C be the set of functions R+ → R. For a graph kernel g ∈ C (defined in the

spectral domain) and a node i , the localization operator T G
i : C →RN reads:

T G
i g [n] :=

N−1∑
`=0

g (λ`)u∗
` [i ]u`[n] = (g (L)δi )[n] = g (L)[i ,n]. (3.2)

Here we use the calligraphic notation T G
i to differentiate with all the translation operators Ti .

We first observe from (3.2) that the i th line of graph filter matrix g (L) is the kernel g localized

at node i . Intuitively, it means(
g (L)x

)
[i ] = 〈x ,T G

i g 〉. (3.3)

Instead of a kernel, we could replace g (λ`) by x̂[`] in Definition 15 and localize the discrete

vector x̂ instead. In this case, we would match the generalized translation closely (Defini-

tion 14). Nevertheless, we prefer to work with a kernel for three reasons. 1) In practice when

the graph is large, the Fourier basis cannot be computed making it impossible (or at least

complicated) to localize a vector. On the other side, for a kernel g , there are techniques to

approximate T G
i g = g (L)δi (see Section 2.4). 2) The localization properties are theoretically

easier to interpret when g is a filter. Let us suppose that g is a K order polynomial, then the

support of T G
i g is contained exactly in a ball of radius K centered at node i . Building on this

idea, for a sufficiently regular function g , it has been proved in [117, Theorem 1 and Corollary

2] that the localization operator concentrates the kernel g around the vertex i . 3) Using a

kernel ensures some stability when dealing with graph having eigenvalue multiplicity greater

than 1.
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3.1.1 Links with the generalized translation operator

Let us now clarify how generalized translation and localization are linked. The main difference

between these two operators is the domain on which they are applied. Whereas, the translation

operator acts on a discrete signal defined in the time or the vertex domain, the localization

operator requires a continuous kernel or alternatively a discrete signal in the spectral domain.

Both return a signal in the vertex domain. To summarize, in the classical signal processing

framework, the localization operator could be seen as computing the inverse Fourier transform

first and then translating the signal. For graphs, it is an operator that takes a filter from the

spectral domain and localizes it at a given node i while adapting it to the graph structure.

Some extra relations between these operators can be found in Appendix B.2.

3.1.2 Properties of the localization operator

In order to provide further insights on the localization operator, let us review some of its

properties.

Basis independence

In many cases, the graph Fourier basis is not uniquely defined. (It happens whenever an

eigenvalue has a multiplicity greater than 1.) Conveniently, it turns out that the localization

operator is invariant with respect of the basis choice.

Theorem 1. For any graph G and any kernel g :R+ →R such that ∀`, |g (λ`)| <∞, the localiza-

tion operator is independent of the eigenvector basis.

The proof is given in Appendix B.3. As illustrated in Figure 3.1, this property is essential as it

is a warranty that the localization operator respects graph symmetry, i.e., if two vertices are

symmetric in a graph (automorphism), the result of the localization operation will also be

symmetric.1

Generalization of the translation

In the case of a ring graph (see Graph 6), the localization operator is closely linked to the

classical translation operator of equation (B.1).

Theorem 2. Let G be a ring graph of N vertices, for a kernel g :R+ →R such that ∀`, |g (λ`)| <∞,

the localization operator T G
i g satisfies the following properties:

1Given G ′, an automorphism of graph G , two nodes vi (G) and vn (G) are said to be symmetric if vi (G) = vn (G ′).
Given a permuation matrix P that transform G in G ′, we say that G ′ is an automorphism of G if P LP∗ = L. A signal
x is symetric if x = P x .
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Figure 3.1 – The localization operator preserves vertex symmetry. The kernel g is localized
at vertex 1,2 and 3. Because of the graph symmetry T G

2 g is the mirrored version of T G
3 g .

Furthermore T G
2 g [i ] = T G

3 g [i ] for i 6= 2,3.

1. The localized atoms are translated version of each other, i.e., ∀i ,n ∈ {1 . . . N },

T G
i g [n] = T G

N g [n − i ]. (3.4)

2. The localized atoms are always real.

3. T G
i g [n] is symmetric with respect to vertex i , i.e.,

T G
i g [n −k] = T G

i g [n +k]∀k. (3.5)

4. For any symmetric x , a kernel g exists such that x = T G
N g .

The proof is given in Appendix B.4.

Localization properties

In many cases, the localization operator produces a graph signal that has energy concentrated

in a small region of the graph. For example, let us suppose that the kernel g is a polynomial of

order K . Then, the filter associated to g can be written as

g (L) = a0I +a1L +a2L2 +·· ·+aK LK (3.6)

Intuitively, the atom T G
i g [n] = g (L)[i ,n] is strictly localized in a ball of radius K around the

vertex i [52, Section 5.2].
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Based on this simple idea, Shuman et al. [117, Section 4.4] have shown that the smoothness2

of the kernel g is linked to the localization property of this kernel; i.e., if a smooth kernel

g is localized to center vertex i , then the magnitude of T G
i g [n] decays as the hop distance

(Definition 6) hG between i and n increases.

It is quantified by two theorems that are slightly adapted in order to match the framework

used in this thesis. The first theorem states that the decay rate of the localization operator is

bounded by the approximation rate of the kernel g with a polynomial pK .

Theorem 3 (Theorem 1 [117]). 3 Let g : [0,λmax] → R be a kernel and set Ki n = hG (i ,n)−1.

Then for r, q ≥ 1 such that 1
r + 1

q = 1,

∣∣T G
i g [n]

∣∣≤µ2 q−1
q

G inf
pKi n

∥∥g −pKi n

∥∥
r , (3.7)

where µG = max`,n |u`[n]|, the infimum is taken over all polynomials pKi n of order Ki n and

∥∥g −pKi n

∥∥
r =

(
N−1∑
`=0

(
g (λ`)−pKi n (λ`)

)r

) 1
r

. (3.8)

Theorem 3 guaranties localization providing that the polynomial coefficients are decaying at a

sufficient rate. Furthermore, when the kernel g is differentiable, the second and next Theorem

develops the bound by introducing explicitly the error of a Chebyshev approximation.

Theorem 4 (Corollary 2 [117]). Given two nodes vi and vn separated by the hop distance

hG (vi , vn), If g is hG (vi , vn)-times continuously differentiable on [0,λmax], then

∣∣T G
i g [n]

∣∣≤ [
2

hG (i ,n)!|g (0)|
(
λmax

4

)hG (vi ,vn )
]

sup
λ∈[0,λmax]

∣∣∣g (hG (vi ,vn ))(λ)
∣∣∣ . (3.9)

Theorem 4 provides an important insight on localization. Let us scale the kernel g by defining

ga(x) = g (ax). In this case, the derivatives are given by g (k)
a (x) = ak g (k)(ax) and the localiza-

tion bound becomes

∣∣T G
i g [n]

∣∣≤ [
2

hG (vi , vn)!|g (0)|
(

aλmax

4

)hG (i ,n)
]

sup
λ∈[0,λmax]

∣∣∣g (hG (vi ,vn ))(λ)
∣∣∣ . (3.10)

If a < 1, the values of the kth derivative decreases by ak and the global smoothness of the kernel

is improved. As a result, the bound given in (3.10) diminishes and T G
i g is more localized. The

relation (3.10) is an uncertainty principle that quantifies the tradeoff between localization in

the spectral and in the vertex domains.

Faber polynomials can also be used to improve the localization bound. While this is beyond

2The polynomial coefficients of a smooth function have a rapid decay.
3The missing

p
N term comes from differences between the definitions.
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Chapter 3. Structural clustering via the graph localization operator

the scope of this thesis, we note that [12, Theorems 3.4 and 3.7] can be adapted to the GSP

framework. Important results are also available in [13, 11]

Example 6 (Disconnected node/component). As a direct implication of Theorem 4, we can

treat the case of an isolated node. Let us suppose that the vertex i is disconnected from the graph.

Then the localization operator perfectly localizes the kernel on the vertex i as:

T G
i g = g (0)δi .

More generally, if a graph G is made of two disconnected components G1(V1,E1,W1) and

G2(V2,E2,W2), then ∀vi ∈ V1, the support of the localization operator remains on V1, i.e.,

T G
i g [n] = 0, ∀vn ∈ V2. (3.11)

Preservation of the frequency content

The shape of the localized kernel cannot be described trivially as it relies completely on the

graph structure. One helpful picture is to consider the localization operator as a filtering

operation with a Kronecker, i.e.,

T G
i g = g (L)δi . (3.12)

As illustrated in Example 7, the graph frequency content of the Kronecker δi depends on the

structure around the vertex i and is, in general, not identical between two different vertices.

As a result, the localized kernels may have significantly different shapes depending on where

it is localized on the graph. Nevertheless, if the graph has a regular structure, a global behavior

is more or less preserved.

Example 7. Figure 3.2 shows an example of localization of two kernels: a) the heat kernel and

b) the Mexican hat wavelet. The shape of the localized kernels adapts to the graph topology. In

the case of the heat kernel, it simply corresponds to the result of diffusing a unit of heat along

the graph edges. In the case of the Mexican hat, we also observe that the general shape of the

wavelet is preserved. It has large positive values around the node where it is localized. It then

goes negative a few nodes further away and stabilizes at zero for nodes far away. To summarize,

the localization operator preserves the global behavior of the filter while adapting to the graph

topology.

3.1.3 Norm of the localized atoms

Except for special cases (such as when G is a circulant graph4 with µG = 1p
N

and the Laplacian

eigenvectors form the DFT basis) the localization operator of Definition 15 is not isometric.

4a graph with a circulant weight matrix
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3.1. The localization operator

(a) Heat kernel

(b) Mexican hat wavelet

Figure 3.2 – Shape of localized kernels. The kernels are localized around three different vertices
(highlighted by a black circle). We observe that the shape of the localized kernels adapts to the
graph structure.

Lemma 2 ([117], Lemma 1). For any g ∈CN ,

|ĝ (0)|p
N

≤ ∥∥T G
i g

∥∥
2 ≤ νi

∥∥ĝ
∥∥

2 ≤µG
∥∥ĝ

∥∥
2 , (3.13)

where νi = max` |u`[i ]|. It yields to the following upper bound on the operator norm of T G
i :

∥∥T G
i

∥∥
op = sup

g

∥∥T G
i g

∥∥
2∥∥g (λ)

∥∥
2

≤ νi ≤µG ,

It is interesting to note that although the norm is not preserved when a kernel is localized on

an arbitrary graph, it is preserved on average when translated separately to every vertex on the
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Chapter 3. Structural clustering via the graph localization operator

graph:

N∑
i=1

∥∥T G
i g

∥∥2
2 =

N∑
i=1

N−1∑
`=0

∣∣g (λ`)ū`[i ]
∣∣2 =

N−1∑
`=0

∣∣g (λ`)
∣∣2

N∑
i=1

|ū`[i ]|2 = ∥∥g (λ)
∥∥2

2 . (3.14)

The following example presents more precise insights on the interplay between the localization

operator, the graph structure, and the concentration of localized functions.

Example 8. Figure 3.3 illustrates the effect of the graph structure on the norms of localized

functions. We take the kernel to be localized to be a heat kernel of the form g (λ`) = e−τλ` ,

for some constant τ > 0. We localize the kernel g to be centered at each vertex i of the graph

with the operator T G
i , and we compute and plot their `2-norms

∥∥T G
i g

∥∥
2
. The figure shows

that when a center node i and its surrounding vertices are relatively weakly connected, the

`2-norm of the localized heat kernel is large, and when the nodes are relatively well-connected,

the norm is smaller. Therefore, the norm of the localized heat kernel may be seen as a measure

of vertex centrality. In fact, the square norm of the localized heat kernel at vertex i is, up to

constants, the average diffusion distance from i to all other vertices. It is therefore a genuine

measure of centrality. Moreover, in the case of the heat kernel, we can relate the `2-norm of

T G
i g to its concentration5 ‖T G

i g ‖2

‖T G
i g ‖1

. Localized heat kernels are comprised entirely of nonnegative

components; i.e., T G
i g [n] ≥ 0 for all i and n. This property comes from (i) the fact that T G

i g [n] =(
g (L)

)
i n , and (ii) the non-trivial property that the entries of g (L) are always nonnegative for the

heat kernel [75]. Since T G
i g [n] ≥ 0 for all i and n, we have

∥∥T G
i g

∥∥
1 =

N∑
n=1

T G
i g [n] = g (0) = 1, (3.15)

where the second equality follows from [117, Corollary 1]. We can combine (3.13) and (3.15) to

derive an upper bound on the concentration of T G
i g :∥∥T G

i g
∥∥

2∥∥T G
i g

∥∥
1

= ∥∥T G
i g

∥∥
2 ≤ νi

∥∥g (λ)
∥∥

2 .

Thus,
∥∥T G

i g
∥∥

2
serves as a measure of concentration, and according to the numerical experi-

ments of Figure 3.3, localized heat kernels centered on the relatively well-connected regions of

a graph tend to be less concentrated than the ones centered on relatively less well-connected

areas. Intuitively, the values of the localized heat kernels can be linked to the diffusion of a unit

of energy from the center vertex to surrounding vertices over a fixed time. In the well-connected

regions of the graph, energy diffuses faster, making the localized heat kernels less concentrated.

In Example 8, we have suggested that the norm of the localized heat kernel at vertex vi is

related to the global connectivity in its neighborhood. It turns out that using different kernels,

5In Section 4.1.4, we detail the relation between the norms and the concentrations measures.
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3.2. Graph spectrograms

Figure 3.3 – The heat kernel g (λ`) = e−10
λ`

λmax (upper left), and the norms of the localized heat

kernels,
{∥∥T G

i g
∥∥

2

}
i=1,2,...,N

, on various graphs. For each graph and each center node i , the

color of vertex i is proportional to the value of
∥∥T G

i g
∥∥

2
. Within each graph, the nodes i that

are relatively less connected to their neighborhood seem to yield a larger norm
∥∥T G

i g
∥∥

2
.

we can extract additional structural node properties.

3.2 Graph spectrograms

Traditional Fourier eigenvectors are completely un-localized, i.e., they span the entire domain

with a constant modulus. On the contrary, when it comes to the graph Laplacian, some of

the energy eigenvectors can be concentrated onto a small graph region or even onto a single

vertex, i.e., their energy is concentrated in a region of the graph. In this case, the nodes do

not contain all frequencies equally. The localization operator gives us the intuition that the

frequency content of a node is highly related to the graph structure around it. Based on this

idea, we propose a new graph analysis tool that captures the graph structure locally.

To this end, the non-isometric property of the localization operator is not to be seen as a curse.

On the contrary, it can be used to extract the frequency content of a node. Let us suppose that

the kernel g is well concentrated around a few frequencies. It turns out that the norm of the

localization operator can be used to extract the local graph frequency availability:

∥∥T G
i g

∥∥2
2 =

N−1∑
`=0

g 2(λ`)|u`|2[i ] = 〈g 2(λ), |u·|2[i ]〉. (3.16)

To summarize, the norm of the localization operator can be used to access graph eigenvector

localization.
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Chapter 3. Structural clustering via the graph localization operator

3.2.1 Definition

Let us build a transform that assigns to each vertex a feature vector/function characterizing its

spectral properties.

Definition 16 (Graph spectrogram). Given a graph G and a kernel g , the graph spectrogram is

defined for µ ∈R as

SG (i ,µ) = ∥∥T G
i g (·−µ)

∥∥2
2 =

N−1∑
`=0

g 2(λ`−µ)|u`|2[i ]. (3.17)

The graph spectrogram satisfies a few interesting properties.

1. It provides for each vertex the same energy, i.e.,

∫
R

S 2
G (i ,µ)dµ=

N−1∑
`=0

|u`|2[i ]
∫
R

g 2(λ`−µ)dµ= ‖g‖2
2

N−1∑
`=0

|u`|2[i ] = ‖g‖2
2 (3.18)

2. If the kernel g is chosen to be concentrated around 0, then the graph spectrogram

estimates the frequency content of the graph nodes. Indeed, from (3.16), we know that

SG (i ,µ) will be large if the node i contains some frequency around µ.

3. If the kernel g is chosen to be normalized (
∫
R g 2(x)dx = 1) and concentrated around 0,

then the cumulative graph spectrogram
∑

i S 2
G (i ,µ) provides an estimator of the eigen-

value density around µ:

N∑
i=1

S 2
G (i ,µ) =

N∑
i=1

N−1∑
`=0

g 2(λ`−µ)|u`|2[i ] =
N−1∑
`=0

g 2(λ`−µ) = ∥∥g (λ−µ1)
∥∥2

2 . (3.19)

4. Using the combinatorial Laplacian, if the weights of a graph are scaled by a constant

factor, then the frequency axis of the graph spectrogram is equivalently scaled, i.e., let

G1(V ,E ,W ) and G2(V ,E , aW ), then

SG2 (i ,µ) = SG1 (i , aµ) (3.20)

This last property indicates the importance of the scale of the edges weights, especially,

when one uses graph spectrograms to compare different graphs.

3.2.2 Parameter selection and efficient computation

Discretization

In practice, the graph spectrogram is computed only at K equally spaced values between 0

and λmax.

Definition 17. Given k = 1, . . . ,K , let us denote µk = (k−1)λmax
K−1 and define the window gk (x) =
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3.2. Graph spectrograms

g (x −µk ). The discretized graph spectrogram is defined as

SG [i ,k] = SG (i ,µk ) = ∥∥T G
i gk

∥∥2
2 (3.21)

Because of the discretization, the mass associated with each node may not be constant (i.e.,∑
k SG [i ,k] 6= c,∀i ). One solution is to design the mother kernel g such that the set of filter

{gk (L)}k=1,...,K forms a tight frame, i.e., from Lemma 1 we need ∀λ ∈ [0,λmax]

K∑
k=1

gk (λ) =
K∑

k=1
g 2

(
λ− (k −1)λmax

K −1

)
= A. (3.22)

When a tight filter bank is used, then the mass of the discretized graph is constant over the

vertex set, i.e.,∑
k

SG [i ,k] = A, ∀vi ∈ V . (3.23)

a property resembling (3.17).

Itersine construction

There exists different constructions of kernel g satisfying (3.22). For convenience, we develop

in this subsection a particular one that we use extensively in this thesis. Our solution is based

on the function

itersine(λ) =
sin

(1
2πcos2(πλ)

)
if λ ∈ [−1

2 , 1
2

]
0 otherwise.

(3.24)

Depending on the overlap o and of K , the mother kernel g is defined as

g (λ) = 2

o
itersine

(
K −o +1

oλmax

)
. (3.25)

Using this construction, the set of filters {gk (L)}k=1,...,K forms a tight filter bank when the

overlap o is even. The overlap parameter allows to tune the width of the kernel g .

Efficient computation

A direct computation of the graph spectrogram requires a cubic amount of computation.

Indeed there are N K filtering operations to be done, making the complete computation scale

as O
(
N 3K

)
for exact filtering or O (N EKOc ) if the Chebyshev approximation is used (See

Section 2.4). A direct computation is thus clearly impossible for large graphs (more than a few

thousands nodes).

To overcome this issue, we present an approximation with a linear complexity with the number
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Chapter 3. Structural clustering via the graph localization operator

of edges E and the number of filters K . The central idea is summarized in the following Lemma.

Lemma 3. Let G be a graph of size N , g a kernel and w ∼ D(0N , IN ) a vector of i.i.d. random

variables, then we have

E
[(〈w ,T G

i g 〉)2
]
= ∥∥T G

i g
∥∥2

2 . (3.26)

Proof. A direct computation shows:

E
[∣∣〈w ,T G

i g 〉∣∣2
]
= E[(T G

i g )∗w w∗T G
i g

]= (T G
i g )∗E

[
w w∗]

T G
i g = ∥∥T G

i g
∥∥2

2 .

Lemma 3 tells us that
∥∥T G

i g
∥∥2

2
can be estimated for all vertices vi at once using M graph filter-

ing operation. Based on this idea, we propose Algorithm 2 that has a complexity O (K MEOc ),

where Oc is the order of the Chebyschev approximation and M the number of random signals

to be filtered. The parameter M controls the trade-off between accuracy and complexity as

detailed by Theorem 5.

Algorithm 2 Fast Graph Spectrogram

1: INPUT: G , K , g , M , D(0, I ).
2: Draw M random i.i.d signals wm according to the distribution D.
3: Filter all random signals for all kernels: xk,m = gk (L)wm .
4: Average the squared filtered signals: ṠG [i ,k] = 1

M

∑M
m=1(xk,m[i ])2.

Theorem 5. For every distribution D with a zero first moment m1 = 0, a second moment m2 = 1

and bounded fourth order moments m4, the sample Fast Graph Spectrogram estimator ˙SG [i ,k]

(a) is unbiased,

E
[
ṠG [i ,k]

]= SG [i ,k], (3.27)

(b) and has variance

Var
[
ṠG [i ,k]

]= 1

M

(∥∥T G
i gk

∥∥4
4 (m4 −3)+2

∥∥T G
i gk

∥∥4
2

)
. (3.28)

The proof is given in Appendix B.5.

Theorem 5 characterizes our estimator and provides a good insight to choose a sampling

distribution for the second step of Algorithm 2. For example, if a Gaussian distribution is

selected, i.e., w ∼ N (0, I ) , then m4 = 3 and the variance becomes simply:

Var
[
ṠG [i ,k]

]= 2

M

∥∥T G
i g

∥∥4
2 .
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3.3. Application: structural clustering

To minimize the variance, a distribution with negative excess kurtosis should be chosen. The

optimal one is a centered Bernoulli distribution with the parameter p = 0.5:

w [n] =
1 with probability 0.5 and

−1 with probability 0.5.
(3.29)

In this case, m4 = 1 and the variance from (3.28) is minimized

Var
[
ṠG [i ,k]

]= 2

M

(∥∥T G
i g

∥∥4
2 −

∥∥T G
i gk

∥∥4
4

)
. (3.30)

Furthermore the factor
∥∥T G

i g
∥∥4

2
−∥∥T G

i gk
∥∥4

4
depends on the concentration level of the vector

T G
i g . The sparser T G

i g , the smaller the difference and vice versa. In the extreme case where

g (x) = 1 and thus T G
i g = δi , the variance is 0 and the estimator is exact. In the worst case

where g (x) =p
Nδ0(x) and thus T G

i g = 1p
N

,
∥∥T G

i g
∥∥4

2
−∥∥T G

i gk
∥∥4

4
= ∥∥T G

i g
∥∥4

2

(
1− 1

N

)
. Note that

in general, the concentration level of an atom T G
i g does not depend on the graph size.

3.3 Application: structural clustering

In practice, to compute a graph spectrogram, M different values of µ are selected and hence

each vertex is assigned with a M-dimensional feature vector that characterizes its surrounding

structure. In this context, a natural application is to classify graph nodes according to their

role. The approach we will follow in this section is very different from traditional clustering

methods where nodes are classified according to their position.

3.3.1 Spectral clustering

Traditional spectral clustering [131, 132] is done by computing the first k eigenvectors (associ-

ated with the lowest eigenvalues) of the (normalized) graph Laplacian. These eigenvectors

form a low dimensional embedding for the graph vertices. Thus we can compute a distance be-

tween the vertices. The final clusters are obtained using k-means on the embedding. Figure 3.4

shows an example of a few graphs.

Figure 3.4 – Traditional clustering of various graphs. Nearby nodes are classified together.
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Chapter 3. Structural clustering via the graph localization operator

This intuition behind spectral clustering is that the first graph eigenvectors also encode the

smallest variations on the graph. Indeed, from (2.16), we know that the lowest eigenvec-

tors minimize
‖∇G x‖2

2

‖x‖2
2

. As a result, close vertices tend to have similar values on the lowest

eigenvectors.

3.3.2 Roots of structural clustering

It turns out that the Laplacian eigenvectors contain much more information than node locality.

Associated with the eigenvalues, they can reconstruct the Laplacian and thus contain the

full graph structure. There is only little literature characterizing relations between the graph

structure and the graph eigenvectors. Most of the literature focus on the graph spectra [36, 71,

28] or characterize the Perron-Frobenius vector. Nevertheless, a few simple observations can

be made.

• Eigenvector localization: Completely regular structures such as “path, ring, grid and

torus” have also completely delocalized eigenvectors. Some random graphs with low

diameter, such as “Erdos-Renyi” [38, 37] (and probably “D-regular”) also have usually

delocalized eigenvectors. In most of the other cases, at least some eigenvectors are

localized. For example, sensor networks usually have localized eigenvectors.

• Composition of graphs: If two graphs are weakly connected together to form a third

larger graph, the Fourier basis of the third graph is a perturbed version of the two

original Fourier bases. This often creates localized eigenvectors. As an illustration, see

the “comet” and the “community” (generated from the stochastic block model) graphs

displayed in Figure 3.8 . (They are respectively referred to Graphs 8 and 9).

• Symmetry in graphs: Graph symmetry (also referred as “automorphism”) creates eigen-

value multiplicity. More information can be found in [4, 18, 15].

• Node degree: When the combinatorial Laplacian is used, the degree plays an important

role in the shape/localization of the eigenvectors. Node with higher degrees seems to

contain higher frequency components. This is illustrated in Figure 3.5.

• Isolated nodes: An isolated vertex leads to Kronecker eigenvector. For an illustration,

please refer to Figure 4.4 and Graph 10.

3.3.3 Definition of structural clustering

In order to construct a structural clustering algorithm, we need to define meaningful features

that characterize graph vertices according to graph structure. In harmonic analysis, the

eigenvectors are resonance modes of the graph. Our idea is simple:

Node with similar structures will resonate at the same frequencies.
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3.3. Application: structural clustering

Figure 3.5 – Correlation between the nodes’ degree and large values of the graph eigenvectors.
Left: Random sensor graph (the signal is the degree of the nodes). Right: Modulus of the
Fourier basis with the nodes sorted according to their degree. The degree is plotted in yellow.
Node with higher degrees also have higher frequency components.

Since the eigenvectors form an orthonormal basis, one can see their squared modulus as a

distribution over the graph spectrum. The distribution for the vertex i is defined as follows

φi (x) =
N−1∑
`=0

u2
`[i ]δλ`(x), (3.31)

where

δλ(x) =
1 if x =λ, and

0 otherwise.
(3.32)

The spectral distance between two vertices vi and vn is defined as the Earth Mover’s Distance

(EMD) [105] between the two distributions φi (x) and φn(x). The EMD distance represents the

minimum mass that needs to be moved in order to transform one distribution to another one.

In our case it can be computed as the difference of the Cumulative Density Functions (CDF)

Φi .

Definition 18. The spectral distance between vertices vi and vn is defined as:

dS(vi , vn) :=
∫ λmax

0
|Φi (x)−Φn(x)|dx (3.33)

where

Φi (x) =
∫ x

0
φi (y)dy =

N−1∑
`=0
λ`≤x

u2
`[i ]. (3.34)

The function Φi can be seen as a feature function associated to the node i . In Figure 3.6, we

observe that this function has some correlation with the degree of the node. In fact, the degree

of the node can be seen as a first order structural feature for graph vertices.
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Chapter 3. Structural clustering via the graph localization operator

Figure 3.6 – Cumulative density function of the eigenvector energy for the sensor graph
displayed in Figure 3.5. Here we use an “Itersine” construction with an overlap of o = 4 and
K = 30. The nodes are ordered by degree (plotted in red). The estimated CDF is a smoothed
version of the exact CDF.

Fast approximation of the structural distance

It turns out that using the graph spectrogram, we can approximate the structural distance.

This avoids the diagonalization of the Laplacian, which is computationally expensive.

Let us first approximate the CDF φi . Given K kernels gk satisfying (3.22) with A = 1 and

µk = k−1
K−1λmax, the CDF function Φi (µk ) is approximated by

Φ̇i (µk ) :=
k∑

l=1
SG [i , l ] =

k∑
l=1

∥∥T G
i gl

∥∥2
2 =

N−1∑
`=0

u2
`[i ]

k∑
l=1

g 2
l (λ`). (3.35)

If the mother kernel g is localized around 0, the term
∑k

l=1 g 2
l (λ`) is a step function equal to 1

for λ`¿µk and equal to 0 for λ`Àµk . The bias of the estimator is

∣∣Φi (µk )− Φ̇i (µk )
∣∣= ∣∣∣∣∣N−1∑

`=0

(
sµk (λ`)−

k∑
l=1

g 2
l (λ`)

)
u2
`[i ]

∣∣∣∣∣≤ N−1∑
`=0

∣∣∣∣∣sµk (λ`)−
k∑

l=1
g 2

l (λ`)

∣∣∣∣∣u2
`[i ], (3.36)

where

sµk (λ) =
1 if λ≤µk

0 otherwise.

The bias is characterized by how much
∑k

l=1 g 2
l approximates the step down function sµk . The

term u2
`

[i ] weights the error according to the localization of the frequency content of the vertex

i . We build now our estimator of the structural distance.

Definition 19. Given K kernels gk satisfying (3.22) with A = 1, the estimated structural distance

between nodes vi and vn is defined as:

ḋS(vi , vn) := 1

K

K∑
k=1

∣∣Φ̇i (µk )− Φ̇n(µk )
∣∣= 1

K

K∑
k=1

∣∣∣∣∣N−1∑
`=0

(
u2
`[i ]−u2

`[n]
) k∑

l=1
g 2

l (λ`)

∣∣∣∣∣ (3.37)

Figures 3.6 and 3.7 compare the exact and approximate CDF and the structural distances for
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3.3. Application: structural clustering

Figure 3.7 – Different distances between the vertices of a sensor graph (“Itersine” construction
with an overlap of o = 4 and K = 30, sensor graph displayed in Figure 3.5). The nodes are
sorted by degree.

the sensor graph. It turns out that the structural distance is highly correlated with the vetex

degrees. The structural distance captures mostly local structure variations that are due to

random sampling. Furthermore, these variations are well encoded by the degree. The degree

can be seen as a first order structural feature, but is in general not sufficient to determine the

role of the graph node.

At this point, we are ready to build a simple structural clustering algorithm. We simply

consider Φ̇i as the vertex feature for the node i and apply the k-means algorithm to find Nc

clusters (Algorithm 3). The algorithm complexity is governed by the computation of the graph

spectrogram, which is O (E MKOc ).

Algorithm 3 Structural Clustering

1: INPUT: G , K , g , Nc .
2: Compute SG or its estimate using Algorithm 2.
3: Compute Φ̇i [k] :=∑k

l=1 SG [i , l ], k = 1, . . . ,K
4: Use Φ̇i as a feature vector for node i and use k-means to obtain Nc clusters

3.3.4 Numerical experiments

Example 9 (Graph spectrogram and clustering). We compute the spectrogram and perform

structural clustering on four different graphs, three of them are described below.

Graph 7 (Symmetric 3-tree). A symmetric 3-tree is a tree graph where the root and each leaf

have exactly 3 leaves for a specified amount of layers. In this example, we consider five-layers

symmetric 3-tree. All nodes from the same layer are structurally identical.

Graph 8 (Comet). A comet graph is made of a star with k vertices connected to a center vertex

and a single branch of length greater than one extending from one neighbor of the center vertex.
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Chapter 3. Structural clustering via the graph localization operator

This graph is studied in [106, 76]. All leaves are structurally identical. In this example, we use

k = 11 and n = 20.

Graph 9 (Community). A community graph is made of communities connected according to the

stochastic block model, i.e., intra-community and extra-community connections have probabil-

ity pi n and pout . In this example we use 6 communities respectively of size 10,30,60,10,30,60 for

a total of N = 200 nodes. We connect the nodes randomly inside a community with a probability

pi n = 0.5 and outside of the community with probability pout = 0.005.

In Figure 3.8, we compute the Graph spectrogram for these four graphs (Graphs 4, 7, 8 and 9, i.e.,

sensor N = 256, symmetric 3-tree, comet and community) and we perform structural clustering

of Algorithm 3 (“Itersine” filter bank with an overlap of o = 4 and K = 30, k-means with 10

random initializations, we input the correct amount of cluster for each example). Nodes with

the same role are classified together. The clustering results of both the tree and the comet graphs

are what one would naturally expect, i.e., nodes with similar roles are grouped together. For the

community graph, the algorithm gathers together communities of the same size. It is expected as

they have statistically the same structure. A perfect clustering would be obtained if the structural

features would have been filtered using the graph (see Example 10). In a sensor graph, the nodes

are mostly clusterized according to their degree, which makes sense, since it is probably the most

relevant structural information for this type of graph.

Comparison with the degree The degree plays an important role in the CDF(see middle column

in Figure 3.8). However it is in general not sufficient and too simple to perform structural

clustering. As a simple example, it is insufficient to characterize for the comet and the tree graph.

Furthermore, even for the community graph where the node structure is mostly characterized by

its degree, as shown in Figure 3.9, degree clustering fails.

Eigenvalue density estimation From property (3.19), computing the spectrogram also provides

us with an estimation of the eigenvalue density. Figure 3.10 compares the obtained approxima-

tions with histograms. The precision of this estimation depends on the bandwidth of the mother

window g : the smaller the more precise. Our estimator reads

ṗG (µk ) =
∑N

i=1 SG (i ,k)

N A
=

∥∥λ−µk 1
∥∥2

2

N A
. (3.38)

Example 10 (Unsupervised image segmentation example). Let us illustrate further how struc-

tural clustering can be used in image processing. From the “peppers” image (512×512 pixels) we

create a graph where each pixel is a node. The graph is created by comparing patches of pixels of

size 5×5, i.e., we connect two nodes if their neighborhood is similar. This operation results in a

graph of 262′144 vertices.

The processing is done as follows: a) we compute the spectrogram using Algorithm 2, b) we

remove some noise from the spectrogram using a graph smoothing and c) we perform structural
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3.3. Application: structural clustering

(a) Comet graph

(b) Tree graph

(c) Community graph

(d) Sensor graph

Figure 3.8 – Graph spectrograms, vertices features and structural clustering for various graphs.
Structural clustering successfully classifies the node according to their role in the graph.

clustering. The denoising operation is done since we assume, for this example, that pixels with

similar properties are connected together.

In Figure 3.11 top, we observe that the algorithm separates the image according to the degree of

smoothness of the images: constant parts are depicted in yellow and parts with large gradients

are in dark blue. On the bottom of Figure 3.11 we displayed the 4 first bands of the graph spec-

trogram before and after the smoothing operation. These features captures different structural

properties of the image.
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Chapter 3. Structural clustering via the graph localization operator

Figure 3.9 – Clustering the community graph according to the degree. Using this simple
feature, the clustering algorithm is not able to cluster the communities according to their
sizes.

(a) Comet graph (b) Community graph

(c) Sensor graph (d) Tree graph

Figure 3.10 – Estimation of the eigenvalue density. Equation (3.38) successfully approximates
the eigenvalue density function.
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3.3. Application: structural clustering

Figure 3.11 – Unsupervised pixel classification based on the image structure. Pixel are classi-
fied according to their level of smoothness in the image. The spectral features, corresponding
to the first four bands of the filter bank (blue, red, orange, and purple), are carrying the
structure of the image.
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4 Global and local uncertainty princi-
ples for graph signals

4.1 Introduction

4.1.1 What is an uncertainty principle?

An uncertainty principle is a relation that limits the concentration of a function (signal) in

one or two domains simultaneously. For example, one version of the Heisenberg Uncertainty

principle states that a function f cannot be arbitrarily concentrated simultaneously in time

and in frequency. The relation characterizes the mean

M( f ) =
∫
R

t | f (t )|2dt ,

and the variance

V ( f ) =
∫
R

(t −M( f ))2| f (t )|2dt .

The Heisenberg’s uncertainty principle states that any function f satisfies

V ( f )V ( f̂ ) ≥C

where C = 1
2
p

2π
or C = 1

2 depending on the choice of the Fourier definition.

We emphasize that the domain R is regular, i.e., the spreading both in Fourier and in time

is independent of the function localization. A function f : R→ R and its shifted version

fb(t ) = f (t −b), have the same spreadings in both the time and the Fourier domains:

V
(

f
)=V

(
fb

)
, V

(
f̂
)=V

(
f̂b

)
, ∀b ∈R.

As a consequence, the Heisenberg uncertainty principle is also independent of the localization

of f and we can characterize the entire domain Rwith the single number C .

Unfortunately, due to the inhomogeneous structure of graphs, the spreading of a signal
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Chapter 4. Global and local uncertainty principles for graph signals

depends on its localization and a new technique is required to accurately bound its measure:

a local uncertainty principle, i.e., a bound adapting to each graph node.1

4.1.2 Why study graph uncertainty principles?

In signal processing, uncertainty principles such as the ones presented in [31, 30, 34, 51, 16,

100] form an important tool to design and evaluate linear transforms for processing “classical”

signals such as audio signals, time series, and images residing on Euclidean domains. It is

desirable that the dictionary atoms are jointly localized in time and frequency, and uncer-

tainty principles characterize the resolution tradeoff between these two domains. Moreover,

while “the uncertainty principle is [often] used to show that certain things are impossi-

ble,” Donoho and Stark [31] present “examples where the generalized uncertainty principle

shows something unexpected is possible; specifically, the recovery of a signal or image de-

spite significant amounts of missing information.” In particular, uncertainty principles can

provide guarantees that, if a signal has a sparse decomposition in a dictionary of incoherent

atoms, this is indeed a unique representation that can be recovered via optimization [30, 34].

Many of the multiscale transforms designed for graph signals attempt to leverage intuition

from signal processing techniques designed for signals on Euclidean data domains by gen-

eralizing fundamental operators and transforms to the graph setting (e.g., by checking that

they correspond on a ring graph). While some intuition, such as the notion of filtering with

a Fourier basis of functions that oscillate at different rates, carries over to the graph setting,

the irregular structure of the graph domain often restricts our ability to generalize ideas. One

prime example is the lack of a shift-invariant notion of translation of a graph signal that is

discussed in Chapter 3. As shown in [70, 106] and discussed in [117, Section 3.2], the concentra-

tion of the Fourier basis functions is another example where the intuition does not carry over

directly. Complex exponentials, the basis functions for the classical Fourier transform, have

global support across the real line. On the other hand, the eigenvectors of the combinatorial

or normalized graph Laplacians, which are most commonly used as the basis functions for a

graph Fourier transform, are sometimes localized to small regions of the graph. Because the

incoherence between the Fourier basis functions and the standard normal basis underlies

many uncertainty principles, we demonstrate this issue with a short example.

Example 11 (Part I: Laplacian eigenvector localization). Let us consider the two manifolds

(surfaces) embedded in R3 and shown in the first row of Figure 4.1. The first one is a flat square.

The second is identical except for the center where it contains a spike. We sample both of

these manifolds uniformly across the x-y plane and create a graph by connecting the 8 nearest

neighbors with weights depending on the distance (W (vi , vn) = e−di n /σ). The energy of each

Laplacian eigenvector of the graph arising from the first manifold is not concentrated on any

particular vertex; i.e., maxi ,` |u`[i ]|¿ 1, where u` is the eigenvector associated with eigenvalue

λ`.

1This chapter is availlable with small modifications in [89].
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4.1. Introduction

Figure 4.1 – Concentration of graph Laplacian eigenvectors. We discretize two different
manifolds by sampling uniformly across the x-y plane. Due its bumpy central part, the graph
arising from manifold 2 has a graph Laplacian eigenvector (shown in the middle row of the
right column) that is highly concentrated in both the vertex and graph spectral domains.
However, the eigenvectors of this graph whose energy primarily resides in the flatter parts
of the manifold (such as the one shown in the bottom row of the right column) are less
concentrated, and some closely resemble the Laplacian eigenvectors of the graph arising from
the flat manifold 1 (such as the corresponding eigenvector shown in the bottom row of the left
column.

However, the graph arising from the second manifold does have a few eigenvectors, such as

eigenvector 3 shown in the middle row Figure 4.1, whose energy is highly concentrated on the

region of the spike; i.e., maxi ,` |u`[i ]| ≈ 1. Yet, the Laplacian eigenvectors of this second graph

whose energy resides primarily on the flatter regions of the manifold, such as eigenvector 17

shown in the bottom row of Figure 4.1, are not too concentrated on any single vertex. Rather,

they more closely resemble some of the Laplacian eigenvectors of the graph arising from the first

manifold.
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Chapter 4. Global and local uncertainty principles for graph signals

4.1.3 Classification of uncertainty principle and related work

Uncertainty principles can be divided into three different families that we detail in this section.

Furthermore, the majority of uncertainty principles are independent of the signal localization.

We call them “global” as opposed to “local” when the signal localization matters.

Family A: Concentration around a reference point

The first family of uncertainty principles measure the spreading around some reference point,

usually the mean position of the energy contained in the signal. The well-known Heisenberg

uncertainty principle [40, 68] presented in the beginning of this section belongs to this family.

It views the modulus square of the signal in both the time and Fourier domains as energy

probability density functions, and takes the variance of those energy distributions as measures

of the spreading in each domain. The uncertainty principle states that the product of variances

in the time and in the Fourier domains cannot be arbitrarily small. The generalization of

this uncertainty principle to the graph setting is complex since there does not exist a simple

formula for the mean value or the variance of graph signals, in either the vertex or the graph

spectral domains.

For unweighted graphs, Agaskar and Lu [1, 2, 3] also view the square modulus of the signal

in the vertex domain as an energy probability density function and use the geodesic graph

distance (shortest number of hops) to define the spread of a graph signal around a given

center vertex. For the spread of a signal x in the graph spectral domain, Agaskar and Lu use

the normalized variation x∗Lx
‖x‖2

2
, which captures the smoothness of a signal. They then specify

uncertainty curves that characterize the tradeoff between the smoothness of a graph signal

and its localization in the vertex domain. This idea is generalized to weighted graphs in [80].

As pointed out in [3], the tradeoff between smoothness and localization in the vertex domain

is intuitive as a signal that is smooth with respect to the graph topology cannot feature values

that decay too quickly from the peak value. However, as shown in Figure 4.1 (and subsequent

examples in Table 4.1), graph signals can indeed be simultaneously highly localized or concen-

trated in both the vertex domain and the graph spectral domain. This discrepancy is because

the normalized variation used as the spectral spread in [3] is one method to measure the

spread of the spectral representation around the eigenvalue 0, rather than around some mean

of that signal in the graph spectral domain.

In fact, using the notion of spectral spread presented in [3], the graph signal with the highest

spectral spread on a graph G is the graph Laplacian eigenvector associated with the highest

eigenvalue. The graph spectral representation of that signal is a Kronecker delta whose energy

is completely localized at a single eigenvalue. One might argue that its spread should in fact

be zero. So, in summary, while there does exist a tradeoff between the smoothness of a graph

signal and its localization around any given center vertex in the vertex domain, the classical

idea that a signal cannot be simultaneously localized in the time and frequency domains does
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4.1. Introduction

not always carry over to the graph setting. While certainly an interesting avenue for continued

investigation, we do not discuss uncertainty principles based on spreads in the vertex and

graph spectral domains any further in this thesis.

Family B: Absolute concentration

The second family of uncertainty principles involve the absolute sparsity or concentration

of a signal. The key quantities are typically either support measures counting the number of

non-zero elements, or concentration measures, such as `p -norms. An important distinction

is that these sparsity and concentration measures are not localization measures. They can

give the same values for different signals, independent of whether the predominant signal

components are clustered in a small region of the vertex domain or spread across different

regions of the graph. An example of a recent work from the graph signal processing literature

that falls into this family is [130], in which Tsitsvero et al. propose an uncertainty principle

that characterizes how jointly concentrated graph signals can be in the vertex and spectral

domains. Generalizing prolate spheroidal wave functions [118], their notion of concentration

is based on the percentage of energy of a graph signal that is concentrated on a given set of

vertices in the vertex domain and a given set of frequencies in the graph spectral domain.

Since we can interpret signals defined on graphs as finite dimensional vectors with well-

defined `p -norms, we can also apply directly the results of existing uncertainty principles for

finite dimensional signals. As one example, the Elad-Bruckstein uncertainty principle of [34]

states that ifα and β are the coefficients of a vector x ∈RN in two different orthonormal bases,

then

‖α‖0 +
∥∥β∥∥

0

2
≥

√
‖α‖0 ·

∥∥β∥∥
0 ≥

1

µ
, (4.1)

where µ is the maximum magnitude of the inner product between any vector in the first basis

with any vector in the second basis.

Family C: Joint representation

The third family of uncertainty principles characterizes a single joint representation of time

and frequency. The short-time Fourier transform (STFT) is an example of a time-frequency

representation that projects a signal x onto a set of translated and modulated copies of a

function g . Usually, g is a function localized in the time-frequency plane, for example a

Gaussian, vanishing away from some known reference point in the joint time and frequency

domain. Hence this transformation reveals local properties in time and frequency of x by

separating the time-frequency domain into regions where the translated and modulated

copies of g are localized. This representation obeys an uncertainty principle: the STFT

coefficients cannot be arbitrarily concentrated. This can be shown by estimating the different

`p -norms of this representation (note that the concentration measures of the second family of
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Chapter 4. Global and local uncertainty principles for graph signals

uncertainty principles are used). For example, Lieb [64] proves a concentration bound on the

ambiguity function (e.g., the STFT coefficients of the STFT atoms). Lieb’s approach is more

general than the Heisenberg uncertainty principle, because it handles the case where the

signal is concentrated around multiple different points (see, e.g., the signal x3 in Figure 4.2).

Local uncertainty principles

While the family B of uncertainty principles above in general yields global uncertainty prin-

ciples, we can generalize family C to the graph setting in a way that yields local uncertainty

principles. In the classical Euclidean setting, the underlying domain is homogeneous, and

thus uncertainty principles apply to all signals equally, regardless of where on the real line

they are concentrated. However, in the graph setting, the underlying domain is irregular,

and a change in the graph structure in a single small region of the graph can drastically

affect the uncertainty bounds. For instance, the second family of uncertainty principles all

depend on the coherence between the graph Laplacian eigenvectors and the standard normal

basis of Kronecker deltas, which is a global quantity in the sense that it incorporates local

behavior from all regions of the graph. To see how this can limit the usefulness of such global

uncertainty principles, we return to the motivating example 11.

Example 12 (Part II: Global versus local uncertainty principles). In Section 4.2.2, we show that

a direct application of a result from [100] to the graph setting yields the following uncertainty

relationship, which falls into the second family described above, for any signal x ∈RN :(‖x‖2

‖x‖1

)(‖x̂‖2

‖x̂‖1

)
≤ max

i ,`
|u`[i ]|. (4.2)

Each fraction in the left-hand side of (4.2) is a measure of concentration that lies in the interval

[ 1p
N

,1] (N is the number of vertices), and the coherence between the graph Laplacian eigenvec-

tors and the Kronecker deltas on the right-hand side lies in the same interval. On the graph

arising from manifold 1 (Figure 4.1), the coherence is close to 1p
N

, and (4.2) yields a meaningful

uncertainty principle. However, on the graph arising from manifold 2 (Figure 4.1), the coherence

is close to 1 due to the localized eigenvector 3 in Figure 4.1, (4.2) is trivially true for any signal in

Rn from the properties of vector norms, and thus the uncertainty principle is not particularly

useful. Nevertheless, far away from the spike, signals should behave similarly on manifold 2 to

how they behave on manifold 1. Part of the issue here is that the uncertainty relationship holds

for any graph signal x , even those concentrated on the spike, which we know can be jointly

localized in both the vertex and graph spectral domains. An alternative approach is to develop

a local uncertainty principle that characterizes the uncertainty in different regions of the graph

on a separate basis. Then, if the energy of a given signal is concentrated on a more homogeneous

part of the graph, the concentration bounds will be tighter.
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4.2. Generalization of traditional uncertainty principles

4.1.4 Concentration measures

In this thesis, we focus on Families B and C. Thus we need to introduce some concentra-

tion/sparsity measures. Throughout the thesis, we use the terms sparsity and concentra-

tion somewhat interchangeably, but we reserve the term spread to describe the spread of

a function around some mean or center point (Family C).

• The first concentration measure is the support measure of x , denoted ‖x‖0, which

counts the number of non-zero elements of x .

• The second concentration measure is the Shannon entropy, which is used often in

information theory and physics:

H(x) =−∑
n
|x[n]|2 ln |x[n]|2, (4.3)

where the variable n has values in {1,2, . . . , N } for functions on graphs and in {0,1, . . . , N −
1} in the graph Fourier representation.

• Another class of concentration measures is the `p -norms, with p ∈ [1,∞]. For p 6= 2, the

sparsity of x may be measured using the following quantity: p-concentration measure

sp (x) =


‖x‖2
‖x‖p

, if 1 ≤ p ≤ 2
‖x‖p

‖x‖2
, if 2 < p ≤∞.

(4.4)

For any vector x ∈CN and any p ∈ [1,∞], sp (x) ∈
[

N
−

∣∣∣ 1
p − 1

2

∣∣∣
,1

]
. If sp (x) is high (close to

1), then x is sparse, and if sp (x) is low, then x is not concentrated.

Figure 4.2 uses some basic signals to illustrate this notion of concentration, for different values

of p. In addition to sparsity, one can also relate `p -norms to the Shannon entropy via Renyi

entropies (see, e.g., [99, 101] for more details).

4.2 Generalization of traditional uncertainty principles

In this section, we introduce some notation and illustrate further how certain intuitionw from

signal processing on Euclidean spaces do not carry over to the graph setting.

4.2.1 Concentration of the graph Laplacian eigenvectors

The spectrum of the graph Laplacian replaces the frequencies as coordinates in the Fourier

domain. For the special case of shift-invariant graphs with circulant graph Laplacians [49,

Section 5.1], the Fourier eigenvectors can still be viewed as pure oscillations. However, for

more general graphs (i.e., all but the most highly structured), the oscillatory behavior of the

Fourier eigenvectors must be interpreted more broadly. For example, [114, Figure 3] displays
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p sp (x1) sp (x2) sp (x3) sp (x4)
1.00 0.32 0.46 0.50 1.00
1.33 0.56 0.69 0.71 1.00
2.00 1.00 1.00 1.00 1.00
4.00 0.56 0.75 0.71 1.00
∞ 0.32 0.68 0.50 1.00

Figure 4.2 – The concentration sp (·) of four different example signals (all with 2-norm equal to
1), for various values of p. Note that the position of the signal coefficients does not matter for
this concentration measure. Different values of p lead to different notions of concentration;
for example, x2 is more concentrated than x3 if p = ∞ (it has a larger maximum absolute
value), but less concentrated if p = 1.

the number of zero crossings of each eigenvector; that is, for each eigenvector, the number of

pairs of connected vertices where the signs of the values of the eigenvector at the connected

vertices are opposite. It is generally the case that the graph Laplacian eigenvectors associated

with larger eigenvalues contain more zero crossings, yielding a notion of frequency to the

graph Laplacian eigenvalues. However, despite this broader notion of frequency, the graph

Laplacian eigenvectors are not always globally-supported pure oscillations like the complex

exponentials. In particular, they can feature sharp peaks, meaning that some of the Fourier

basis elements can be much more similar to an element of the canonical basis of Kronecker

deltas on the vertices of the graph. As we will see, uncertainty principles for signals on graphs

are highly affected by this phenomenon.

One way to compare a graph Fourier basis to the canonical basis is to compute the coherence

between these two representations:

µG = max
i ,`

|〈δi ,u`〉| = max
i ,`

|u`[i ]| = max
`

s∞(u`).

This quantity measures the similarity between the two sets of vectors. If the sets possess

a common vector, then µG = 1 (the maximum possible value for µG ). If the two sets are

maximally incoherent, such as the canonical and Fourier bases in the standard discrete setting,

then µG = 1/
p

N (the minimum possible value).

Because the graph Laplacian matrix encodes the weights of the edges of the graph, the coher-

ence µG clearly depends on the structure of the underlying graph. It remains an open question

exactly how structural properties of weighted graphs such as the regularity, clustering, modu-

larity, and other spectral properties can be linked to the concentration of the graph Laplacian

eigenvectors. For certain classes of random graphs [29, 33, 129] or large regular graphs [14],

the eigenvectors have been shown to be non-localized, globally oscillating functions (i.e., µG

is low). Yet, empirical studies such as [70] show that graph Laplacian eigenvectors can be
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4.2. Generalization of traditional uncertainty principles

highly concentrated (i.e., µG can be close to 1), particularly when the degree of a vertex is

much higher or lower than the degrees of other vertices in the graph. The following example

illustrates how µG can be influenced by the graph structure.

Example 13. In this example, we discuss two classes of graphs that can have graph Fourier

coherences. The first, called comet graphs (Graph 8), are studied in [106, 76]. They are composed

of a star with k vertices connected to a center vertex, and a single branch of length greater than

one extending from one neighbor of the center vertex (see Figure 4.3, top). If we fix the length

of the longer branch (it has length 10 in Figure 4.3), and increase k, the number of neighbors

of the center vertex, the graph Laplacian eigenvector associated with the largest eigenvalue

approaches a Kronecker delta centered at the center vertex of the star. As a consequence, the

coherence between the graph Fourier and the canonical bases approaches 1 as k increases.

The second class consists in modified path graphs, which we use several times in this chapter.

Graph 10 (Modified path). We start with a standard path graph of 10 nodes equally spaced

(all edge weights are equal to one) and we move the first node out to the left; i.e., we reduce the

weight between the first two nodes (see Figure 4.3, bottom). The weight is related to the distance

by W12 = 1/d12 with d12 being the distance between the nodes 1 and 2.

When the weight between nodes 1 and 2 decreases, the eigenvector associated with the largest

eigenvalue of the Laplacian becomes more concentrated, which increases the coherence µG .

These two examples of simple families of graphs illustrate that the topology of the graph can

impact the graph Fourier coherence, and, in turn, uncertainty principles that depend on the

coherence.

In Figure 4.4, we display the eigenvector associated with the largest graph Laplacian eigenvalue

for a modified path graph of 100 nodes, for several values of the weight W12. Observe that the

shape of the eigenvector has a sharp local change at node 1.

Example 13 demonstrates an important point to keep in mind. A small local change in the

graph structure can greatly affect the behavior of one eigenvector, and, in turn, a global

quantity such as µG . However, intuitively, a small local change in the graph should not

drastically change the processing of signal values far away, for example in a denoising or

inpainting task. For this reason, in Section 4.4.1, we introduce a notion of local uncertainty

that depicts how the graph is behaving locally.

Note that not only special classes of graphs or pathological graphs yield highly localized graph

Laplacian eigenvectors. Rather, graphs arising in applications such as sensor or transportation

networks, or graphs constructed from sampled manifolds (such as the graph sampled from

manifold 2 in Figure 4.1) can also have graph Fourier coherences close to 1 (see, e.g., [117,

Section 3.2] for further examples).
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Figure 4.3 – Coherence between the graph Fourier basis and the canonical basis for the graphs
described in Example 13. Top left: Comet graphs with k = 6 and k = 12 branches, all of length
one except for one of length ten. Top right: Evolution of the graph Fourier coherence µG with
respect to k. Bottom left: Example of a modified path graph with 10 nodes. Bottom right:
Evolution of the coherence of the modified path graph with respect to the distance between
nodes 1 and 2. As the degree of the comet’s center vertex increases or the first node of the

modified path is pulled away, the coherence µG tends to the limit value
√

N−1
N .

Figure 4.4 – Eigenvectors associated with the largest graph Laplacian eigenvalue of the modi-
fied path graph with 100 nodes, for different values of W12. As the distance between the first
two nodes increases, the eigenvector becomes sharply peaked.

4.2.2 Direct applications of uncertainty principles for discrete signals

We start by applying three known uncertainty principles for discrete signals to the graph

setting.
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4.2. Generalization of traditional uncertainty principles

Theorem 6. Let x ∈CN be a nonzero signal defined on a connected, weighted, undirected graph

G , let {u`}`=0,1,...,N−1 be a graph Fourier basis for G , and let µG = maxi ,` |〈δi ,u`〉|. We have the

following four uncertainty principles:

(i) the support uncertainty principle [34]

‖x‖0 +‖x̂‖0

2
≥

√
‖x‖0 ‖x̂‖0 ≥

1

µG
, (4.5)

(ii) the `p -norm uncertainty principle [100]

‖x‖p ‖x̂‖p ≥µ1− 2
p

G ‖x‖2
2 , p ∈ [1,2], (4.6)

(iii) the entropic uncertainty principle [67]

H(x)+H(x̂) ≥−2lnµG . (4.7)

(iv) the ‘local’ uncertainty principle [40]∑
i∈VS

|x[i ]|2 ≤ |VS |‖x‖2
∞ ≤ |VS |µ2

G ‖x̂‖2
1 (4.8)

for any subset VS of the vertices V in the graph G .

The first uncertainty principle is given by a direct application of the Elad-Bruckstein inequal-

ity [34]. It states that the sparsity of a function in one representation limits the sparsity in

a second representation. As displayed in (4.1), the work of [34] holds for representations in

any two bases. As we have seen, if we focus on the canonical basis {δi }i=1,...,N and the graph

Fourier basis {u`}`=0,...,N−1, the coherence µG depends on the graph topology. For the ring

graph, µG = 1p
N

, and we recover the result from the standard discrete case (regular sampling,

periodic boundary conditions). However, for graphs where µG is closer to 1, the uncertainty

principle (4.5) is much weaker and therefore less informative. For example, ‖x̂‖0 ‖x‖0 ≥ 1
µ2

G
≈ 1

is trivially true of nonzero signals.

The same caveat applies to (4.6) and (4.7), which follow directly from [100] and [67], respec-

tively, by once again specifying the canonical and graph Fourier bases. The last inequality (4.8)

is an adaptation [40, Eq. (4.1)] to the graph setting, using the Hausdorff-Young inequality of

Theorem 7 (see next section). It states that the energy of a function in a subset of the domain

is bounded from above by the size of the selected subset and the sparsity of the function in

the Fourier domain. If the subset VS is small and the function is sparse in the graph Fourier

domain, this uncertainty principle limits the amount of energy of x that fits inside of the

subset of VS . Because VS can be chosen to be a local region of the domain (the graph vertex

domain in our case), Folland and Sitaram [40] refer to such principles as “local uncertainty

inequalities.” However, the term µG in the uncertainty bound is not local in the sense that it
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depends on the whole graph structure and not just on the topology of the subgraph containing

vertices in VS .

The following example illustrates the relation between the graph, the concentration of a

specific graph signal, and one of the uncertainty principles from Theorem 6. We return to

this example in Section 4.2.4 to discuss further the limitations of these uncertainty principles

featuring µG .

Example 14. Figure 4.5 shows the computation of the quantities involved in (4.6), with p = 1

and different G ’s taken to be the modified path graphs of Example 13, with different distances

between the first two vertices. We show the left-hand side of (4.6) for two different Kronecker

deltas, one centered at vertex 1, and one centered at vertex 10. We have seen in Figure 4.3 that,

as the distance between the first two vertices increases, the coherence increases, and therefore

the lower bound on the right-hand side of (4.6) decreases. For δ1, the uncertainty quantity

on the left-hand side of (4.6) follows a similar pattern. The intuition behind this is that, as

the weight between the first two vertices decreases, a few of the eigenvectors start to have local

jumps around the first vertex (see Figure 4.4). As a result, we can sparsely represent δ1 as a

linear combination of those eigenvectors and
∥∥∥δ̂1

∥∥∥
1

is reduced. However, since there are not

any eigenvectors that are localized around the last vertex in the path graph, we cannot find a

sparse linear combination of the graph Laplacian eigenvectors to represent δ10. Therefore, its

uncertainty quantity on the left-hand side of (4.6) does not follow the behavior of the lower

bound.

Figure 4.5 – Numerical illustration of the `p -norm uncertainty principle on a sequence of
modified path graphs with different mutual coherences between the canonical basis of deltas
and the graph Laplacian eigenvectors. For each modified path graph, the weight W12 of the
edge between the first two vertices is the reciprocal of the distance shown on the horizontal
axis. The black crosses show the lower bound on the right-hand side of (4.6), with p = 1. The
blue and red lines show the corresponding uncertainty quantity on the left-hand side of (4.6),
for the graph signals δ1 and δ10, respectively.
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4.2.3 The Hausdorff-Young inequalities for signals on graphs

The classical Hausdorff-Young inequality [98, Section IX.4] is a fundamental harmonic analysis

result behind the intuition that a high degree of concentration of a signal in one domain (time

or frequency) implies a low degree of concentration in the other domain. This relation is used

in the proofs of the entropy and `p -norm uncertainty principles in the continuous setting. In

this section, as we continue to explore the role ofµG and the differences between the Euclidean

and graph settings, we extend the Hausdorff-Young inequality to graph signals.

Theorem 7. Let µG be the coherence between the graph Fourier and canonical bases of a graph

G . Let p, q > 0 be such that 1
p + 1

q = 1. For any signal x ∈ CN defined on G and 1 ≤ p ≤ 2, we

have

‖x̂‖q ≤µ1− 2
q

G ‖x‖p . (4.9)

Conversely, for 2 ≤ p ≤∞, we have

‖x̂‖q ≥µ1− 2
q

G ‖x‖p . (4.10)

The proof of Theorem 7, given in Sec. C.1, is an extension of the classical proof using the Riesz-

Thorin interpolation theorem. In the classical (infinite dimensional) setting, the inequality

only depends on p and q . On a graph, it depends on µG and hence on the structure of the

graph.

Dividing both sides of each inequality in Theorem 7 by ‖x‖2 leads to bounds on the concentra-

tions (or sparsity levels) of a graph signal and its graph Fourier transform.

Corollary 1. Let p, q > 0 be such that 1
p + 1

q = 1. For any signal x ∈CN defined on the graph G ,

we have

sp (x)sq (x̂) ≤µ
∣∣∣1− 2

q

∣∣∣
G .

Theorem 7 and Corollary 1 assert that the concentration or sparsity level of a graph signal in

one domain (vertex or graph spectral) limits the concentration or sparsity level in the other

domain. However, once again, if the coherence µG is close to 1, the result is not particularly

informative as sp (x)sq (x̂) is trivially upper bounded by 1. The following numerical experi-

ment illustrates the quantities involved in the Hausdorff-Young inequalities for graph signals.

We again see that as the graph Fourier coherence increases, signals may be simultaneously

concentrated in both the vertex domain and the graph spectral domain.

Example 15. Continuing with the modified path graphs of Examples 13 and 14, we illustrate

the bounds of the Hausdorff-Young inequalities for graph signals in Figure 4.6. For this example,

we take the signal x to be δ1, a Kronecker delta centered on the first node of the modified path

graph. As a consequence, ‖δ1‖p = 1 for all p, which makes it easier to compare the quantities
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involved in the inequalities. For this example, the bounds of Theorem 7 are fairly close to the

actual values of
∥∥δ̂1

∥∥
q .

(a) (b)

Figure 4.6 – Illustration of the bounds of the Hausdorff-Young inequalities for graph signals on
the modified path graphs with x =δ1. (a) The quantities in (4.9) and (4.10) for q = 1, 4

3 ,4, and
∞. (b) The quantities in Corollary 1 for the same values of q .

Sharpness of the graph Hausdorff-Young inequalities. For p = q = 2, (4.9) and (4.10) be-

comes equalities. Moreover, for p = 1 or p =∞, there is always at least one signal for which

the inequalities (4.9) and (4.10) become equalities, respectively. Let i1 and `1 satisfy µG =
maxi ,` |u`[i ]| = |u`1 (i1)|. For p = 1, let x = δi1 . Then ‖x‖1 = 1, and ‖x̂‖∞ = max` |〈δi1 ,u`〉| =
µG , and thus (4.9) is tight. For p =∞, let x = u`1 . Then ‖x‖∞ = µG , ‖x̂‖1 = ∥∥û`1

∥∥
1 = 1, and

thus (4.10) is tight. The red curve and its bound in Figure 4.6 show the tight case for p = 1 and

q =∞.

4.2.4 Limitations of global concentration-based uncertainty principles in the graph
setting

The motivation for this sub-section was twofold. First, we want to derive the uncertainty

principles for graph signals analogous to some of those that are so fundamental for signal

processing on Euclidean domains. However, we also want to highlight the limitations of this

approach (the family B of uncertainty principles described in Section 4.1.3) in the graph setting.

The graph Fourier coherence is a global parameter that depends on the topology of the entire

graph. Hence, it may be greatly influenced by a small localized changes in the graph structure.

For example, in the modified path graph examples above, a change in a single edge weight

leads to an increased coherence, and in turn significantly weakens the uncertainty principles

characterizing the concentrations of the graph signal in the vertex and spectral domains. Such

examples call into question the ability of such global uncertainty principles for graph signals

to accurately describe phenomena in inhomogeneous graphs. This is the primary motivation

for our investigation into local uncertainty principles in Section 4.4.1. However, before getting

there, we consider global uncertainty principles from the family C of uncertainty principles
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described in Section 4.1.3 that bound the concentration of the analysis coefficients of a graph

signal in a time-frequency transform domain.

4.3 Global uncertainty principles

4.3.1 Some definitions

As mentioned in Section 4.1, uncertainty principles can inform dictionary design. In the next

section, we present uncertainty principles characterizing the concentration of the analysis

coefficients of graph signals in different transform domains. We focus on three different classes

of dictionaries for graph signal analysis: (i) frames, (ii) graph filter-bank frames, and (iii) graph

Gabor filter bank frames, where graph filter bank frames are a subclass of frames, and graph

Gabor filter bank frames are a subclass of graph filter bank frames. In this section, we define

these different classes of dictionaries, and highlight some of their mathematical properties.

Note that our notation uses dictionary atoms that are doubly indexed by i and k, but these

could be combined into a single index m for the most general case.

Definition 20 (Frame). A dictionary D = {gi ,k } is a frame if there exist constants A and B called

the lower and upper frame bounds such that for all x ∈CN :

A‖x‖2
2 ≤

∑
i ,k

|〈x , gi ,k〉|2 ≤ B ‖x‖2
2 .

If A = B, the frame is said to be a tight frame.

For more properties of frames, see, e.g., [20, 59, 60]. Most of the recently proposed dictionaries

for graph signals are either orthogonal bases (e.g., [24, 77, 107]) , which are a subset of tight

frames, or overcomplete frames (e.g., [52, 117, 115, 128]).

A frame is a graph filter bank frame if it is generated using the localization operator of multiples

graph filters, i.e.,

Dg = {gi ,k } = {T G
i gk } (4.11)

In order to be a frame g has to satisfy the criteria of Lemma 1, more specifically

G(λ`) =
K∑

k=1
gk (λ`) > 0, `= 0,1, . . . , N −1 (4.12)

If the graph spectrum is not known, one can simply check the stronger condition G(λ) > 0 on

the interval [0,λmax]. Note that, the frame constant of a graph filter bank frame defined as

(4.11) are A = min`G(λ`) and B = max`G(λ`).

In order to generalize classical windowed Fourier frames, we often use a graph filter bank

where the kernels are uniform translates, which we refer to as a graph Gabor filter bank.
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Definition 21 (Graph Gabor filter bank). When the K kernels used to generate the graph filter

bank frame are uniform translates of each other, we refer to the resulting dictionary as a graph

Gabor filter bank or a graph Gabor filter frame. If we use the warping technique of [115] on

these uniform translates, we refer to the resulting dictionary as a spectrum-adapted graph

Gabor filter frame.

Graph Gabor filter banks are generalizations of the short time Fourier transform. When g is

smooth, the atoms are localized in the vertex domain. In this contribution, for all graph Gabor

filter frames, we use the “itersine” mother window of (3.25). A few desirable properties of this

choice of window are (a) it is perfectly localized in the spectral domain in [−0.5,0.5], (b) it is

smooth enough to be approximated by a low order polynomial, and (c) the frame formed by

uniform translates (with an even overlap) is tight.

The analysis operator of a dictionary D = {gi ,k } to a signal x ∈CN is referred as

(AD x)[i ,k] = 〈x , gi ,k〉.

When D = {gi ,k } = {T G
i gk } is a graph filter bank frame, from Definition 11 we denote it with

Agx = 〈x ,T G
i gk 〉. (4.13)

In all cases, we view AD as a linear operator from CN to C|D| (we use bold notation as we

consider the matrix operator), and thus we use ‖AD x‖p (or
∥∥Agx

∥∥
p ) to denote a vector norm

of the analysis coefficients.

4.3.2 Discrete version of Lieb’s uncertainty principle

Lieb’s uncertainty principle in the continuous one-dimensional setting [64] states that the

cross-ambiguity function of a signal cannot be too concentrated in the time-frequency plane.

In the following, we transpose these statements to the discrete periodic setting, and then

generalize them to frames and signals on graphs. The following discrete version of Lieb’s

uncertainty principle is partially presented in [39, Proposition 2].

Theorem 8. Define the discrete Fourier transform (DFT) as

x̂[k] = 1p
N

N−1∑
n=0

x[n]exp

(− j 2πkn

N

)
,

and the discrete windowed Fourier transform (or discrete cross-ambiguity function) as (see,

e.g., [68, Section 4.2.3])

ADDW F T x[u,k] = 1p
N

N−1∑
n=0

x[n]g∗[n −u]exp

(− j 2πkn

N

)
.
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For two discrete signals of period N , we have for 2 ≤ p <∞

∥∥ADDW F T x
∥∥

p =
(

N∑
u=1

N−1∑
k=0

|ADDW F T x[u,k]|p
) 1

p

≤ N
1
p − 1

2 ‖x‖2
∥∥g

∥∥
2 , (4.14)

and for 1 ≤ p ≤ 2

∥∥ADDW F T x
∥∥

p =
(

N∑
u=1

N−1∑
k=0

|ADDW F T x[u,k]|p
) 1

p

≥ N
1
p − 1

2 ‖x‖2
∥∥g

∥∥
2 . (4.15)

These inequalities are proven in Appendix C.2.2. Note that the minimizers of this uncertainty

principle are the so-called “picket fence” signals, trains of regularly spaced diracs.

4.3.3 Generalization of Lieb’s uncertainty principle to frames

Theorem 9. Let D = {gi ,k } be a frame of atoms in CN , with lower and upper frame bounds A

and B, respectively. For any signal x ∈CN and any p ≥ 2, we have

‖AD x‖p ≤ B
1
p

(
max

i ,k

∥∥gi ,k
∥∥

2

)1− 2
p ‖x‖2 . (4.16)

For any signal x ∈CN and any 1 ≤ p ≤ 2, we have

‖AD x‖p ≥ A
1
p

(
max

i ,k

∥∥gi ,k
∥∥

2

)1− 2
p ‖x‖2 . (4.17)

Combining (4.16) and (4.17), for any p ∈ [1,∞], we have

sp (AD x) ≤ B min{ 1
2 , 1

p }

Amax{ 1
2 , 1

p }

(
max

i ,k

∥∥gi ,k
∥∥

2

)∣∣∣1− 2
p

∣∣∣
. (4.18)

When D is a tight frame with frame bound A, (4.18) reduces to

sp (AD x) ≤ A
−

∣∣∣ 1
2− 1

p

∣∣∣ (
max

i ,k

∥∥gi ,k
∥∥

2

)∣∣∣1− 2
p

∣∣∣
.

A proof is included in Section C.2.1 of the Appendix. The proof of Theorem 8 in Section C.2.2

of the Appendix also demonstrates that this uncertainty principle is indeed a generalization of

the discrete periodic variant of Lieb’s uncertainty principle.
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4.3.4 Lieb’s uncertainty principle for graph filter bank frames

Lemma 2 implies that maxi ,k
∥∥T G

i gk
∥∥

2
≤ µG maxk

∥∥gk (λ)
∥∥

2. Therefore the following is a

corollary to Theorem 9 for the case of graph filter bank frames.

Theorem 10. Let Dg = {gi ,k } = {T G
i gk } be a graph filter bank frame of atoms on a graph G

generated from the sequence of filters g = {g1, g2, . . . , gK }. For any signal x ∈CN on G and for any

p ∈ [1,∞], we have

sp (Agx) ≤ B min{ 1
2 , 1

p }

Amax{ 1
2 , 1

p }

(
max

i ,k

∥∥gi ,k
∥∥

2

)∣∣∣1− 2
p

∣∣∣
≤ B min{ 1

2 , 1
p }

Amax{ 1
2 , 1

p }

(
µG max

k

∥∥gk (λ)
∥∥

2

)∣∣∣1− 2
p

∣∣∣
, (4.19)

where A = min`G(λ`) is the lower frame bound and B = max`G(λ`) is the upper frame bound.

When D is a tight frame with frame bound A, (4.19) reduces to

sp (Agx) ≤ A
−

∣∣∣ 1
2− 1

p

∣∣∣ (
max

i ,k

∥∥gi ,k
∥∥

2

)∣∣∣1− 2
p

∣∣∣
≤ A

−
∣∣∣ 1

2− 1
p

∣∣∣ (
µG max

k

∥∥gk (λ)
∥∥

2

)∣∣∣1− 2
p

∣∣∣
. (4.20)

The bounds depend on the frame bounds A and B , which are fixed with the design of the

filter bank. However, in the tight frame case, we can choose the filters in a manner such that

the bound A does not depend on the graph structure. For example, if the gk are defined

continuously on the interval [0,λmax] and
∑M−1

k=0

∣∣gk (λ)
∣∣2 is equal to a constant for all λ, A is

not affected by a change in the values of the Laplacian eigenvalues, e.g., from a change in the

graph structure. The second quantity, maxi ,k
∥∥gi ,k

∥∥
2 = maxi ,k

∥∥T G
i gk

∥∥
2

, reveals the influence

of the graph. The maximum `2-norm of the atoms depends on the filter design, but also, as

discussed previously in Section 3, on the graph topology. However, the bound is not local as

it depends on the maximum
∥∥T G

i gk
∥∥

2
over all localizations i and filters k, which takes into

account the entire graph structure.

The second bounds in (4.19) and (4.20) also suggest how the filters can be designed in order

to improve the uncertainty bound. The quantity
∥∥gk (λ)

∥∥
2 =

(∑
` |gk (λ`)|2) 1

2 depends on the

distribution of the eigenvalues λ`, and, as consequence, on the graph structure. However, the

distribution of the eigenvalues can be taken into account when designing the filters in order

to reduce or cancel this dependency [115].

In the following example, we compute the first uncertainty bound in (4.20) for different types

of graphs and filters. It provides some insight on the influence of the graph topology and filter

bank design on the uncertainty bound.

Example 16. We use the techniques of [115] to construct four tight localized spectral graph filter

frames for each of eight different graphs. Figure 4.7 shows an examples of the four sets of filters

for a 64 node sensor network. For each graph, two of the sets of filters, (b) and (d) in Figure 4.7,

are adapted via warping to the distribution of the graph Laplacian eigenvalues so that each

filter contains an appropriate number of eigenvalues (roughly equal in the case of translates

and roughly logarithmic in the case of wavelets). The warping excludes filters containing zero
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or very few eigenvalues at which the filter has a nonzero value. These tight frames are designed

such that A = 1, and thus Theorem 10 yields

s∞(Agx) =
∥∥Agx

∥∥∞∥∥Agx
∥∥

2

≤ max
i ,k

∥∥T G
i gk

∥∥
2 ≤µG max

k

∥∥gk (λ)
∥∥

2 .

Table 4.1 displays the values of the first concentration bound maxi ,k
∥∥T G

i gk
∥∥

2
for each graph

and frame pair. The uncertainty bound is largest when the graph is far from a regular lattice

(ring or path). As expected, the worst cases are for highly inhomogeneous graphs like the comet

graph or a modified path graph with one isolated vertex. The choice of the filter bank may also

decrease or increase the bound, depending on the graph.

Graph Gabor

Filter Frame

λ

(a)

Spectrum-Adapted

Graph Gabor

Filter Frame

λ

(b)

Log-Warped

Tight Graph

Wavelet Frame

λ

(c)

Spectrum-Adapted

Tight Graph

Wavelet Frame

λ

(d)

Figure 4.7 – Four different filter bank designs of [115], shown for a random sensor network
with 64 nodes. Each colored curve is a filter defined continuously on [0,λmax], and each filter
bank has 16 such filters. They are designed such that G(λ) = 1 for all λ (black line), and thus
all four designs yield tight localized spectral graph filter frames. The frame bounds here are
A = B = N .

Uniform Translate Spectrum-Adapted Log-Warped Spectrum-Adapted
Graph µG Graph Gabor Graph Gabor Wavelets Wavelets
Ring 0.12 0.33 0.28 0.44 0.45

Random sensor network 0.90 0.70 0.69 0.68 0.69
Random regular 0.43 0.41 0.40 0.57 0.53

Erdos Renyi 0.93 0.68 0.68 0.68 0.67
Comet 0.98 0.70 0.70 0.70 0.70

Path 0.18 0.45 0.38 0.51 0.51
Modified path: W12 = 0.1 0.48 0.69 0.66 0.57 0.58
Modified path: W12 = 0.01 0.70 0.71 0.68 0.70 0.65

Table 4.1 – Numerical values of the uncertainty bound maxi ,k
∥∥T G

i gk
∥∥

2
of Example 16 for

various graphs of 64 nodes.

The uncertainty principle in Theorem 10 bounds the concentration of the graph Gabor trans-

form coefficients. In the next example, we examine these coefficients for a series of signals

with different vertex and spectral domain localization properties.
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Example 17 (Concentration of the graph Gabor coefficients for signals with varying vertex and

spectral domain concentrations.). In Figure 4.8, we analyze a series of signals on a random

sensor network of 100 vertices. Each signal is created by localizing a kernel hτ(λ) = e
− λ2

λ2
max

τ2

to

be centered at vertex 1 (circled in black). To generate the four different signals, we vary the value

of the parameter τ in the heat kernel. We plot the four localized kernels in the graph spectral and

vertex domains in the first two columns, respectively. The more we “compress” h in the graph

spectral domain (i.e., we reduce its spectral spreading by increasing τ), the less concentrated

the localized atom becomes in the vertex domain. The joint vertex-frequency representation

|(AgT G
1 hτ)[i ,k]| of each signal is shown in the third column, which illustrates the trade-off

between concentration in the vertex and the spectral domains. The concentration of these graph

Gabor transform coefficients is the quantity bounded by the uncertainty principle presented in

Theorem 10. In the last row of the Figure 4.8, τ=∞, which leads to a Kronecker delta for the

kernel and a constant on the vertex domain. On the contrary, when the kernel is constant, with

τ= 0 (top row), the energy of the graph Gabor coefficients stays concentrated around one vertex

but spreads along all frequencies.

4.4 Local uncertainty principles

In the previous section, we defined a global bound for the concentration of the localized

spectral graph filter frame analysis coefficients. In the classical setting, such a global bound is

also local in the sense that each part of the domain has the same structure, due to the regularity

of the underlying domain. However, this is not the case for the graph setting where the domain

is irregular. Example 13 shows that a “bad” structure (a weakly connected node) in a small

region of the graph reduces the uncertainty bound even if the rest of the graph is well behaved.

Functions localized near the weakly connected node can be highly concentrated in both the

vertex and frequency domains, whereas functions localized away from it are barely impacted.

Importantly, the worst case determines the global uncertainty bound. As another example,

suppose one has two graphs G1 and G2 with two different structures, each of them having a

different uncertainty bound. The uncertainty bound for the graph G that is the union of these

two disconnected graphs is the minimum of the uncertainty bounds of the two disconnected

graphs, which is suboptimal for one of the two graphs.

In this section, we ask the following questions. Where does this worse case happen? Can we

find a local principle that characterizes more accurately the uncertainty in other parts of the

graph? In order to answer this question, we investigate the concentration of the analysis coef-

ficients of the frame atoms, which are localized signals in the vertex domain. This technique is

used in the classical continuous case by Lieb [64], who defines the (cross-) ambiguity func-

tion, the STFT of a short-time Fourier atom. The result is a joint time-frequency uncertainty

principle that does not depend on the localization in time or in frequency of the analyzed

atom.

Thus, we start by generalizing the definition of ambiguity (or cross-ambiguity) functions from
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τ= 0

τ= 4

τ= 10

τ=∞

Figure 4.8 – Graph Gabor transform of four different signals xτ = T G
1 hτ, with each row corre-

sponding to a signal with a different value of the parameter τ. Each of the signals is a kernel

localized to vertex 1, with the kernel to be localized equal to hτ(λ) = e
− λ2

λ2
max

τ2

. The underlying
graph is a random sensor network of 100 vertices. First column: the kernel hτ(λ) is shown in
red and the localized kernel x̂τ is shown in blue, both in the graph spectral domain. Second
column: the signal xτ in the vertex domain (the center vertex 1 is circled). Third column:
|(AgT G

1 hτ)[i ,k]|, the absolute value of the Gabor transform coefficients for each vertex i and
each of the 20 frequency bands k. Fourth column: since it is hard to see where on the graph
the transform coefficients are concentrated when the nodes are placed on a line in the third
column, we display the value

∑19
k=0 |(AgT G

1 hτ)[i ,k]| on each vertex i in the network. This figure
illustrates the tradeoff between the vertex and the frequency concentration.

time-frequency analysis of one-dimensional signals to the graph setting.

Definition 22 (Ambiguity function). The ambiguity function of a localized spectral frame

D = {gi ,k } = {T G
i gk } is defined as:

Ag[i0,k0, i ,k] = (AgT G
i0

gk0 )[i ,k] = 〈T G
i0

gk0 ,T G
i gk 〉

When the kernels {gk }k=0,1,...,M−1 are appropriately warped uniform translates, the operator

Ag becomes a generalization of the short time Fourier transform. Additionally, the ambiguity
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function assesses the degree of coherence (linear dependence) between the atoms T G
i0

gk0 and

T G
i gk . In the following, we use this ambiguity function to probe locally the structure of the

graph, and derive local uncertainty principles.

4.4.1 Local uncertainty principle

In order to probe the local uncertainty of a graph, we take a set of localized kernels in the

graph spectral domain and center them at different local regions of the graph in the vertex

domain. The atoms resulting from this construction are jointly localized in both the vertex

and graph spectral domains, where “localized” means that the values of the function are zero

or close to zero away from some reference point. By ensuring that the atoms are localized or

have support within a small region of the graph, we focus on the properties of the graph in

that region. In order to get a local uncertainty principle, we apply the frame operator to these

localized atoms, and analyze the concentration of the resulting coefficients. In doing so, we

develop an uncertainty principle relating these concentrations to the local graph structure.

To prepare for the theorem, we first state a lemma that gives a hint to how the scalar product

of two localized functions depends on the graph structure and properties. In the following, we

multiply two kernels g and h in the graph spectral domain. For notation, we represent the

product of these two kernels in vertex domain as g ·h.

Lemma 4. For two kernels g , h and two nodes i ,n, the localization operator satisfies

〈T G
i g ,T G

n h〉 = T G
i (g ·h)[n] (4.21)

and (∑
i

∣∣〈T G
i g ,T G

n h〉∣∣p

) 1
p

= ∥∥T G
n (g ·h)

∥∥
p . (4.22)

The proof is deferred to Appendix C.3.1 Equation (4.21) shows more clearly the conditions

on the kernels and nodes under which the scalar product is small. Let us take two examples.

First, suppose g and h have a compact support on the spectrum and do not overlap (kernels

localized in different places), then g ·h is zero everywhere on the spectrum, and therefore the

scalar product on the left-hand side of (4.21) is also equal to zero. Second, assume i and n

are distant from each other. Then |T G
i (g ·h)[n]| is small if g and h are reasonably smooth. In

other words, the two atoms T G
i g and T G

n h must be localized both in the same area of graph

in the vertex domain and the same spectral region in order for the scalar product to be large.

This localization depends on the atoms, but also on the graph structure.

The following theorem provides inequalities giving a local uncertainty principle. The local

bound depends of the localization of the atom T G
i0

gk0 both in the graph and spectral domains.
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4.4. Local uncertainty principles

The center vertex i0 and kernel gk0 can be chosen to be any vertex and kernel; however, the

locality property of the uncertainty principle appears when T G
i0

gk0 is concentrated around

node i0 in the vertex domain and around a small portion of the spectrum in the graph spectral

domain. Once again, we measure the concentration with `p -norms.

Theorem 11 (Local uncertainty). Let {T G
i gk }{i∈[1,N ],k∈[0,M−1]} be a localized spectral graph filter

frame with lower frame bound A and upper frame bound B. For any i0 ∈ [1, N ],k0 ∈ [0, M −1]

such that
∥∥∥T G

i0
gk0

∥∥∥
2
> 0, the quantity

∥∥∥AgT G
i0

gk0

∥∥∥
p
=

(
M∑

k=1

N∑
i=1

∣∣∣〈T G
i gk ,T G

i0
gk0 〉

∣∣∣p
) 1

p

=
(

M∑
k=1

∥∥∥T G
i0

(gk0 · gk )
∥∥∥p

p

) 1
p

(4.23)

satisfies, for p ∈ [1,∞],

sp

(
AgT G

i0
gk0

)
≤

B min{ 1
p ,1− 1

p }
∥∥∥∥T G

ĩi0,k0

g k̃i0,k0

∥∥∥∥
∣∣∣1− 2

p

∣∣∣
2

A
1
2

≤
B min{ 1

p ,1− 1
p }

(
νĩi0,k0

∥∥∥g k̃i0,k0

∥∥∥
2

)∣∣∣1− 2
p

∣∣∣
A

1
2

, (4.24)

where νi is defined in Lemma 2,

k̃i0,k0 = argmax
k

∥∥∥T G
i0

(gk0 · gk )
∥∥∥∞ , and ĩi0,k0 = argmax

i

∣∣∣T G
i0

(gk0 · g k̃i0,k0
)[i ]

∣∣∣ .

The proof is deferred in Appendix C.3.2.

The bound in (4.24) is local, because we get a different bound for each (i0, k0) pair. For each

such pair, the bound depends on the quantities ĩi0,k0 , k̃i0,k0 , which are maximizers over a set

of all vertices and kernels, respectively; however, as we discuss in Example 18 below, ĩi0,k0 is

typically close to i0, and k̃i0,k0 is typically close to k0. For this reason, this bound typically

depends only on local quantities.

The next corollary shows that in many cases, the local uncertainty inequality (4.24) is sharp

(i.e., it becomes an equality). To obtain this, we require that the frame Ag is tight and that

|〈T G
i gk ,T G

i0
gk0 〉| is maximized when k = k0 and i = i0.

Corollary 2. Under the assumptions of Theorem 11 and, assuming additionally that

1. Ag is a tight frame with frame-bound A,

2. k0 = argmaxk

∥∥∥T G
i0

(gk · gk0 )
∥∥∥∞, and

3. i0 = argmaxn |T G
i0

g 2
k0

[n]|,

we have

s∞
(

AgT G
i0

gk0

)
=

∥∥∥AgT G
i0

gk0

∥∥∥∞∥∥∥AgT G
i0

gk0

∥∥∥
2

=

∥∥∥T G
i0

gk0

∥∥∥
2

A
1
2

. (4.25)
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The proof is deferred to Appendix C.3.3.

Corollary 3. Under the assumptions of Theorem 11, we have

s∞(AgT G
i0

gk0 ) =

∥∥∥AgT G
i0

gk0

∥∥∥∞∥∥∥AgT G
i0

gk0

∥∥∥
2

≥

∥∥∥T G
i0

gk0

∥∥∥
2

B
1
2

, (4.26)

which is a lower bound on the concentration measure.

The proof is given in Appendix C.3.4. Together, Theorem 11 and Corollary 3 yield lower and

upper bounds on the local sparsity levels s∞(AgT G
i0

gk0 ):∥∥∥T G
ĩ

g k̃

∥∥∥
2

A
1
2

≥ s∞(AgT G
i0

gk0 ) =

∥∥∥AgT G
i0

gk0

∥∥∥∞∥∥∥AgT G
i0

gk0

∥∥∥
2

≥

∥∥∥T G
i0

gk0

∥∥∥
2

B
1
2

.

4.4.2 Illustrative examples

In order to better understand the above local uncertainty principle, we illustrate it with some

examples.

Example 18 (Local uncertainty on a sensor network). Let us concentrate on the case where

p =∞. Theorem 11 tells us that

∥∥∥AgT G
i0

gk0

∥∥∥∞∥∥∥AgT G
i0

gk0

∥∥∥
2

≤

∥∥∥∥T G
ĩi0,k0

g k̃i0,k0

∥∥∥∥
2

A
1
2

≤
p

Nνĩi0,k0

∥∥∥g k̃i0,k0

∥∥∥
2

A
1
2

, (4.27)

meaning that the concentration of AgT G
i0

gk0 is limited by 1∥∥∥T G
ĩ

g k̃i0,k0

∥∥∥
2

. One question is to what

extent this quantity is local or reflects the local behavior of the graph. As a general illustration for

this discussion, we present in Figure 4.9 quantities related to the local uncertainty of a random

sensor network of 100 nodes evaluated for two different values of k (one in each column) and all

nodes i .

The first row (not counting the top figure) shows the local sparsity levels of AgT G
i0

gk0 in terms

of the `∞-norm (left hand side of (4.27)) at each node of the graph. The second row shows the

values of the upper bound on local sparsity for each node of the graph (middle term of (4.27)).

The values of both rows are strikingly close. Note that for this type of graph, local sparsity/con-

centration is lowest where the nodes are well connected.

We focus now on the values of k̃ and ĩ as they are crucial in Theorem 11. We also give insights

that explain when a tight bound is obtained, as stated in Corollary 2. There is not a simple way

to determine the value of k̃, because it depends not only on the node i0 and the filters gk , but also

on the graph Fourier basis. However, the definition k̃ = argmaxk

∥∥∥T G
i0

(gk · gk0 )
∥∥∥∞ implies that
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Graph Gabor filter bank

First filter k0 = 0 (blue) Second Filter k0 = 1
(orange)

Local sparsity level:

s∞(AgT G
i0

gk0
) =

∥∥∥AgT G
i0

gk0

∥∥∥∞∥∥∥AgT G
i0

gk0

∥∥∥
2

Upper bound on local sparsity from
Theorem 11:∥∥∥∥T G

ĩi0,k0

gk̃i0,k0

∥∥∥∥
2

A
1
2

Maximizing filter index:
k̃k0,i0

Hop distance between ĩk0,i0 and i0

Lower bound on the local sparsity

from Corollary 3:

∥∥∥T G
i0

gk0

∥∥∥
2

B
1
2

Relative error between s∞(AgT G
i0

gk0 )

and B− 1
2

∥∥∥T G
i0

gk0

∥∥∥
2

:

s∞(AgT G
i0

gk0
)−B− 1

2

∥∥∥T G
i0

gk0

∥∥∥
2

s∞(AgT G
i0

gk0
)

Figure 4.9 – Illustration of Theorem 11 and related variables ĩ and k̃ for a random sensor graph
of 100 nodes. Top figure: the 8 uniformly translated kernels {gk }k (in 8 different colors) defined
on the spectrum and giving a tight frame. Each row corresponds to quantities related to the
local uncertainty principle. The first column concerns the kernel (filter) in blue on the top
figure, the second is associated with the orange one. On a sensor graph, the local uncertainty
level (inversely proportional to the local sparsity level plotted here) is far from constant from
one node to another or from one frequency band to another.
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the two kernels g k̃ and gk0 have to overlap “as much as possible” in the graph Fourier domain in

order to maximize the infinity-norm. In the case of a Gabor filter bank like the one presented in

the first line of Figure 4.9, k0 = k̃ for most of the nodes. This happens because the filters gk and

gk0 do not overlap much if k 6= k0, i.e when∥∥∥g 2
k0

(λ)
∥∥∥2

2
=∑

`

(
g 2

k0
(λ`)

)2
»
∑
`

(
gk0 (λ`)gk (λ`)

)2 = ∥∥(gk · gk0 )(λ)
∥∥2

2 .

In fact, in the case of Figure 4.9, k̃ is bounded between k0 −1 and k0 +1 because there is no

overlap with the other filters. In Figure 4.9, we plot k̃[i ] for k0 = 0 and k0 = 1. For the first

filter, we have k̃i0,k0 = k0 for all vertices i0. The second filter follows the same rule except for two

nodes. The isolated node on the north east is less connected to the rest and there is a Laplacian

eigenvector that is well localized on it. As a consequence, the localization on the graph is affected

in a counter-intuitive manner.

Let us now concentrate on the second important variable: ĩ . Under the assumption that the

kernels gk are smooth, the energy of localized atoms T G
i0

gk reside inside a ball centered at

i0 [117]. Thus, the node n maximizing |T G
i0

(gk0 g k̃ )[n]| cannot be far from the node i0. Let us use

the hop distance hG (vi , vn) (See Definition 6). If the kernels gk are polynomial functions of order

K , the localization operator T G
i0

g concentrates all of the energy of T G
i0

gk inside a K -radius ball

centered in i0. Since the resulting kernel gk0 g k̃ is a polynomial of order 2K , ĩ will be at a distance

of at most 2K hops from the node i0. In general, ĩ is close to i0. In fact, the distance hG (vi0 , v ĩ )

is related to the smoothness of the kernel gk0 g k̃ [117]. To illustrate this effect, we present in

Figure 4.10 the average and maximum hop distance hG (vi0 , v ĩ ). In this example, we control the

concentration of a kernel g with a dilation parameter a: ga(x) = g (ax). Increasing a compresses

the kernel in the Fourier domain and increases the spread of the localized atoms in the vertex

domain. Note that even for high spectral compression, the hop distance hG (vi0 , ĩ ) remains low.

Additionally, we also compute the mean relative error between
∥∥∥T G

i0
g 2

∥∥∥∞ and |T G
i0

g 2 [i0]|. This

quantity asserts how well
∥∥∥T G

i0
g

∥∥∥2

2
estimates

∥∥∥T G
i0

g 2
∥∥∥∞.2 Returning to Figure 4.9, the fourth

row shows the hop distance between i0 and ĩ . It never exceeds 3 for both the first and the second

filter, which is a good sign of locality.

In practice we can not always determine the values of k̃ and ĩ , but as we have seen, the quantity

B− 1
2
∥∥T G

i gk0

∥∥
2

may still be a good estimate of the local sparsity level. Row 5 of Figure 4.9 shows

these estimates, and the last row shows the relative error between these estimates and the actual

local sparsity levels. We observe that for the first kernel, the estimate gives a sufficiently rough

approximation of the local sparsity levels. For the second kernel, the approximation error is low

for most of the nodes, but not all.

In the next example, we compare the local and global uncertainty principles on a modified

path graph.

2From Lemma 4, when
∥∥∥T G

i0
g 2

∥∥∥∞ = |T G
i0

g 2 [i0]|, then
∥∥∥T G

i0
g 2

∥∥∥∞ =
∥∥∥T G

i0
g

∥∥∥2

2
.
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(a) Heat kernel (b) Wavelet kernel

a meani
‖T G

i g ‖∞−|T G
i g [i ]|

‖T G
i g ‖∞

in % meani hG (v ĩ , vi ) maxi hG (v ĩ , vi )

Heat kernel
0.1 0 0 0
0.2 0 0 0
0.5 2.01 0.28 1

1 5.87 0.89 2
2 7.45 1.39 3
5 8.59 2.04 4

10 2.63 2.08 4

Wavelet kernel
0.1 0 0 0
0.2 0 0 0
0.5 9.03 0.62 1
1 10.99 1.07 2
2 17.69 1.67 3
5 29.67 2.07 4

10 33.45 2.48 6

Figure 4.10 – Localization experiment using the sensor graph of Figure 4.9. The heat kernel is

defined as g (ax) = e−
10·ax
λmax and the wavelet kernel g (ax) =p

40 ·ax ·e− 40·ax
λmax . For a smooth kernel

g , the hop distance hG between i and ĩ = argmaxn |T G
i g [n]| is small.

Example 19. On a 64-node modified path graph (see Example 13 for details), we compute

the graph Gabor transform of the signals x1 = T G
1 g0 and x2 = T G

64 g 0. In Figure 4.11, we show

the evolution of the graph Gabor transforms of the two signals with respect to the distance

d = 1/W12 from the first to the second vertex in the graph. As the first node is pulled away, a

localized eigenvector appears centered on the isolated vertex. Because of this, as this distance

increases, the signal x1 becomes concentrated in both the vertex and graph spectral domains,

leading to graph Gabor transform coefficients that are highly concentrated (see the top right plot

in Figure 4.11). However, since the graph modification is local, it does not drastically affect the

graph Gabor transform coefficients of the signal x2 (middle row of Figure 4.11), whose energy is
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Chapter 4. Global and local uncertainty principles for graph signals

concentrated on the far end of the path graph.

In Figure 4.12, we plot the evolution of the uncertainty bounds as well as the concentration of

the Gabor transform coefficients of x1 and x2. The global uncertainty bound from Theorem 10

tells us that

s1(Agx) ≤ max
i ,k

∥∥T G
i gk

∥∥
2 , for any signal x .

The local uncertainty bound from Theorem 11 tells us that

s1(AgT G
i0

gk0 ) ≤
∥∥∥Tĩi0,k0

g k̃i0,k0

∥∥∥
2

, for all i0 and k0.

Thus, we can view the global uncertainty bound as an upper bound on all of the local uncertainty

bounds. In fact the bumps in the global uncertainty bound in Figure 4.12 correspond to the

local bound with i0 = 1 and different frequency bands k0. We plot the local bounds for i0 = 1

and k0 = 0 and k0 = 2.

d = 1 d ≈ 11 d ≈ 17 d = 27 d = 81

x1 = T G
1 g0

x2 = T G
64 g0

x1 = T G
1 g0

Vertex do-
main

Figure 4.11 – Graph Gabor transforms of x1 = T G
1 g0 and x2 = T G

64 g 0 for 5 different distances
between vertices 1 and 2 of the modified path graph. The distance d = 1/W12 is the inverse of
the weight of the edge connecting the first two vertices in the path. The node 64 is not affected
by the change in the graph structure, because its energy is concentrated on the opposite side
of the path graph. The graph Gabor coefficients of x1, however, become highly concentrated
as a graph Laplacian eigenvector becomes localized on vertex 1 as the distance increases. The
bottom row shows that, as the distance between the first two vertices increases, the atom
T G

1 g0 also converges to a Kronecker delta centered on vertex 1.
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Figure 4.12 – Concentration of the graph Gabor coefficients of x1 = T G
1 g0 and x2 = T G

64 g 0 with
respect to the distance between the first two vertices in the modified path graph, along with the
upper bounds on this concentration from Theorem 10 (global uncertainty) and Theorem 11
(local uncertainty). Each bump of the global bound corresponds to a local bound of a given
spectral band of node 1. For clarity, we plot only the bands g0 and g2 for the node 1. For the
node 64, the local bound is barely affected by the change in graph structure, and the sparsity
levels of the graph Gabor transform coefficients of T G

64 g 0 also do not change much.

4.4.3 Single kernel analysis

Let us focus on the case where we analyze a single kernel g . Such an analysis is relevant when

we model the signal as a linear combination of different localizations of a single kernel:

x[n] =
N∑

i=1
wi T G

i g [n]

This model has been proposed in different contributions [82, 42, 138], and has also been used

as an interpolation model, e.g., in [91] and [116, Section V.C]. In this case, we could ask the

following question. If we measure the signal value at node n, how much information do we

get about wn? We can answer this by looking at the overlap between the atom T G
n g and the

other atoms. When T G
n g has a large overlap with the other atoms, the value of x[n] does not

tell us much about wn . However, in the case where T G
n g has a very small overlap with the

other atoms (an isolated node for example), knowing x[n] gives an excellent approximation

for the value of wn . The following theorem uses the sparsity level of g (L)T G
n g to analyze the

overlap between the atom T G
n g and the other atoms.

Theorem 12. For a kernel g , the overlap between the atom localized on the center vertex n and

the other atoms satisfies

Op [n] =
(∑

i

∣∣〈T G
i g ,T G

n g 〉∣∣p) 1
p(∑

i

∣∣〈T G
i g ,T G

n g 〉∣∣2
) 1

2

=
∥∥g (L)T G

n g
∥∥

p∥∥g (L)T G
n g

∥∥
2

=
∥∥T G

n g
∥∥2

p∥∥T G
n g

∥∥2
2
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Proof. This result follows directly from the application of (4.22) in Lemma 4.

4.5 Illustrative application: non-uniform sampling

Example 20 (Non-uniform sampling for graph inpainting). In order to motivate Theorem 12

from a practical signal processing point of view, we use it to optimize the sampling of a signal

over a graph. To assess the quality of the sampling, we solve a small inpainting problem where

only a part of a signal is measured and the goal is to reconstruct the entire signal. Assuming

that the signal varies smoothly in the vertex domain, we can formulate the inverse problem as:

argmin
x

xT Lx s. t. y = M x, (4.28)

where y is the observed signal, M the inpainting masking operator and xT Lx the graph

Tikhonov regularizer (L being the Laplacian). In order to generate the original signal, we

filter Gaussian noise on the graph with a low pass kernel h. The frequency content of the result-

ing signal will be close to the shape of the filter h. For this example, we use the low pass kernel

h(x) = 1
1+ 100

λmax
x

to generate the smooth signal.

For a given number of measurements, the traditional idea is to randomly sample the graph.

Under that strategy, the measurements are distributed across the network. Alternatively, we can

use our local uncertainty principles to create an adapted mask. The intuitive idea that nodes

with less uncertainty (higher local sparsity values) should be sampled with higher probability

because their value can be inferred less easily from other nodes. Another way to picture this fact

is the following. Imagine that we want to infer a quantity over a random sensor network. In

the more densely populated parts of the network, the measurements are more correlated and

redundant. As result, a lower sampling rate is necessary. On the contrary, in the parts where

there are fewer sensors, the information has less redundancy and a higher sampling rate is

necessary. The heat kernel g (x) = e−τx is a convenient choice to probe the local uncertainty of a

graph, because g 2(x) = e−2τx is also a heat kernel, resulting in a sparsity level depending only on∥∥T G
n g 2

∥∥
2. Indeed we have

∥∥T G
n g 2

∥∥
1 = 1. The local uncertainty bound of Theorem 12 becomes:

O1[n] =
∥∥T G

n g 2
∥∥

1∥∥T G
n g 2

∥∥
2

= 1∥∥T G
n g 2

∥∥
2

.

Based on this measure, we design a second random sampled mask with a probability propor-

tional to
∥∥T G

i g 2
∥∥

2
; that is, the higher the overlap level at vertex n, the smaller the probability

that vertex n is chosen as a sampling point, and vice-versa. For each sampling ratio, we per-

formed 100 experiments and averaged the results. For each experiment, we also randomly gen-

erated new graphs. The experiment was carried out using open-source code: the UNLocBoX [87]

and the GSPBox [86]. Figure 4.13 presents the result of this experiment for a sensor graph and

a community graph. In the sensor graph, we observe that our local measure of uncertainty

varies smoothly on the graph and is higher in the more dense part. Thus, the likelihood of
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sampling poorly connected vertices is higher than the likelihood of sampling well connected

vertices. In the community graph, we observe that the uncertainty is highly related to the size

of the community. The larger the community, the larger the uncertainty (or, equivalently, the

smaller the local sparsity value). In both cases, the adapted, non-uniform random sampling

performs better than random uniform sampling.∥∥∥T G
i g

∥∥∥
2
∝

sampling distribution

(Sensor network)

(a)

∥∥∥T G
i g

∥∥∥
2
∝

sampling distribution

(Community graph)

(b)

Reconstruction error

(Sensor network)

(c)

Reconstruction error

(Community graph)

(d)

Smooth signal

(e)

Sample locations

(Uniform sampling)

(f)

Sample locations

(Non-uniform sampling)

(g)

Reconstruction

(Uniform sampling)

(h)

Reconstruction

(Non-uniform sampling)

(i)

Figure 4.13 – Comparison of random uniform sampling and random non-uniform sampling
according to a distribution based on the local sparsity values. Top row: (a)-(b) The random
non-uniform sampling distribution is proportional to

∥∥T G
i g

∥∥
2

(for different values of i ),
which is shown here for sensor and community graphs with 300 vertices. (c)-(d) the errors
resulting from using the different sampling methods on each graph, with the reconstruction
in (4.28). Bottom row: an example of a single inpainting experiment. (e) the smooth signal,
(f)-(g) the locations selected randomly according to the uniform and non-uniform sampling
distributions, (h)-(i) the reconstructions resulting from the two different sets of samples.

Other works are also starting to use uncertainty principles to develop sampling theory for

signals on graphs. In [96], the cumulative coherence is used to optimize the sampling distribu-

tion. This can be seen as sampling proportionally to
∥∥T G

i g
∥∥2

2
, where g is a specific rectangular

kernel, in order to minimize the cumulative coherence of band-limited signals. In [130],

Tsitsvero et al. make a link between uncertainty and sampling to obtain a non-probabilistic

sampling method. While non-uniform random sampling is only an illustrative example in this

paper, we are currently working on a separate contribution that uses our uncertainty theory to

optimize sampling.
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5 Stationary signal processing on
graphs

5.1 Introduction

Graphs have been used in Machine learning problems for decades. The general idea is to

propagate information between similar pieces of data, an operation done in two steps: 1) the

construction of a graph by connecting samples with similar features, and 2), the propagation

the labels through the edges.1 More recently, given x a vector of labels, graphs have been used

extensively as regularizers in optimization problems of the form

argmin
x

f (x)+x∗Lx , (5.1)

where f (x) is usually a data fidellity term such as a `2 loss [122, 7, 110, 55]. The general idea of

the regularizer x∗Lx is that it encodes the sum of all variations of the signal x , i.e.,

x∗Lx = ∥∥∇G x
∥∥2

2 =
1

2

N∑
i=1

N∑
n=1

W [i ,n] (x[n]−x[i ])2 . (5.2)

The solution of Problem 5.1 is in general more accurate than a k-nearest neighbor average

because it takes into account of the non labeled samples to help in the learning process. In

fact the graph is often considered as an approximation of a hidden structure from where the

data is sampled (i.e., the Manifold). An example is shown in Fig 5.1.

In practice, the optimization scheme of Problem 5.1 has proved to be efficient, providing the

following assumption is satisfied: Samples with similar features have similar labels. Unfor-

tunately, this assumption limits the class of signals that can be recovered. For example, it is

impossible to recover oscillating signals. Figure 5.2 illustrates how traditional techniques fails

to recover the signal of an oscillating signal.

In the two previous chapters, we have observed that the behavior of the localization operator

adapts to the graph structure. In this chapter, we use this key feature to generalize graph

1This technique is usually called label propagation.
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Figure 5.1 – Difference between a kNN classifier (left) and a graph classifier (right). The graph
is created by connecting the k = 2 nearest neighbors and captures the structure of the data
inherent of the non-labeled samples. As the label propagates through the graph edges, the
obtain classifier adapts to the structure of the data.

Figure 5.2 – Traditional techniques fails to recover oscillating signals. Here, the central node
should be flag as red. However label propagations techniques assign the yellow class.

regularization for a much broader class of signal that includes oscillations . This is done using

a probabilistic hypothesis called stationarity.2

2This chapter is availlable with small modifications in [82].
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5.1.1 What is stationarity?

Stationarity is a traditional hypothesis in signal processing used to represent a special type

of statistical relationship between samples of a temporal signal. The most commonly used

is wide-sense stationarity, which assumes that the first two statistical moments are invariant

under translation, or equivalently that the correlation between two samples depends only

on their time difference. Stationarity is a corner stone of many signal analysis methods. The

expected frequency content of stationary signals, called Power Spectral Density (PSD), provides

an essential source of information used to build signal models, generate realistic surrogate

data or perform predictions. In Figure 5.3, we present an example of a stationary process

(blue curve) and two predictions (red and green curves). As the blue signal is a realization of a

stationary process, the red curve is more probable than the green one because it respects the

frequency content of the observed signal.

Figure 5.3 – Signal prediction. The red curve is more likely to occur than the green curve
because it respects the frequency statistics of the blue curve.

5.1.2 Generalizing stationarity to graph signals

Classical stationarity is a statement of statistical regularity under arbitrary translations and is

based on a regular structure (often “time”). However many signals do not live on such a regular

structure. For instance, imagine that instead of having one sensor returning a temporal signal,

we have multiple sensors living in a two-dimensional space, each of which delivers only one

value. In this case (see Figure 5.4 left), the signal support is no longer regular. Since there exists

an underlying continuum in this example (2D space), one could assume the existence of a 2D

stationary field and use Kriging [136] to interpolate observations to arbitrary locations, thus

generalizing stationarity for a regular domain but irregularly spaced samples.

On the contrary, in this thesis we generalize stationarity for an irregular domain that is rep-

resented by a graph, without resorting to any underlying regular continuum. Our approach

is to use a weak notion of translation invariance, the localization operator, that captures the
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structure (if any) of the data. Whereas classical stationarity means that correlations are com-

puted by translating the auto-correlation function, here correlations are given by localizing a

common graph kernel, which is a generalized notion of translation as detailed in Section 3.1.

Figure 5.4 (left) presents an example of random multivariate variable living in a 2-dimensional

space. Seen as scattered samples of an underlying 2D stochastic function, one would (rightly)

conclude it is not stationary. However, under closer inspection, the observed values look

stationary within the spiral-like structure depicted by the graph in Figure 5.4 (right). The tradi-

tional Kriging interpolation technique would ignore this underlying structure and conclude

that there are always rapid two dimensional variations in the underlying continuum space.

This problem does not occur in the graph case, where the statistical relationships inside the

data follow the graph edges resulting in this example in signals oscillating smoothly over the

graph. A typical example of a stationary signal on a graph would be the result of a survey

Figure 5.4 – Example of stationary graph signals. The graph connections express relationships
between the different elements of one signal. In this case, the signal varies smoothly along the
snail shape of the graph.

performed by the users of a social network. If there is a relationship between a user’s answer

and those of his neighbours, this relationship is expected to be constant among all users. Using

stationarity on the graph, we could predict the most probable answer for users that never took

the survey.

Outline We use spectral graph theory to extend the notion of stationarity to a broader class

of signals. Leveraging the graph localization operator, we establish the theoretical basis of

this extension in Section 5.4. We show that the resulting notion of stationarity is equivalent to

the proposition of Girault [44, Definition 16], although the latter is not defined in terms of a

localisation operator. Localisation is a very desirable feature, since it naturally expresses the

scale at which samples are strongly correlated.

Since our framework depends on the power spectral density (PSD), we generalize the Welch

method [133, 5] in Section 5.5 and obtain a scalable and robust way to estimate the PSD. It

improves largely the covariance estimation when the number of signals is limited.

Based on the generalization of Wiener filters, we propose a new regularization term for graph

signal optimization instead of the traditional Dirichlet prior, that depends on the noise level
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and on the PSD of the signal. The new optimization scheme presented in Section 5.6 has three

main advantages: 1) it permits to deal with an arbitrary regularization parameter, 2) it adapts

to the data optimally as we prove that the optimization model is a Maximum A Posteriori

(MAP) estimator, and 3) it is more scalable and robust than a traditional Gaussian estimator.

Finally, in Section 5.7, we show experimentally that common datasets such as USPS follow

our stationarity assumption. In section 5.8, we exploit this fact to perform missing data

imputation and we show how stationarity improves over classical graph models and Gaussian

MAP estimator.

5.2 Related work

Graphs have been used for regularization in data applications for more than a decade [114,

122, 139, 92] and two of the most used models will be presented in Section D.1. The idea of

graph filtering was hinted at by the machine learning community [122] but developed for

the spectral graph wavelets proposed by Hammond et al. [52] and extended by Shuman et

al. in [117]. While in most cases, graph filtering is based on the graph Laplacian, Moura et

al. [108] have suggested to use the adjacency matrix instead.

We note that a probabilistic model using Gaussian random fields has been proposed in [42,

138]. In this model, signals are automatically graph stationary with an imposed covariance

matrix. Our model differentiates itself from these contributions because it is based on a much

less restrictive hypothesis and uses the point of view of stationarity. A detailed explanation is

given at the end of Section 5.4.

Finally, stationarity on graphs has been recently proposed in [45, 44] by Girault et al. These

contributions use a different translation operator (presented in Appendix B.1), promoting

energy preservation over localization. While seemingly different, we show that our approach

and Girault’s result in the same graph spectral characterisation of stationary signals. Girault

et al [46] have also shown that using the Laplacian as a regularizer in a de-noising problem

(Tikhonov) is equivalent to applying a Wiener filter adapted to a precise class of graph signals.

In [44, pp 100], an expression of graph Wiener filter can be found.

After the publication of this work in [82], some additional work were done on the topic. First

some PSD estimation methods were proposed in [69, 19]. Then stationarity has been extended

to time evolving signals on graphs in [66, 90].

5.3 Stationarity for temporal signals

Let x[t ] be a time indexed stochastic process. We use x = E[x] to denote the expected value of

x . In this section, we work with the periodic discrete case.

Definition 23 (Time Wide-Sense Stationarity). A signal is Time Wide-Sense Stationary (WSS)
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if its first two statistical moments are invariant under translation, i.e.,

1. x[t ] = E[x[t ]] = c ∈R,

2. E
[
(x[t ]−x[t ])(x[s]−x[s])∗

]=ηx [t − s],

where ηx is called the autocorrelation function of x .

Note that using Theorem 2, the autocorrelation can be written in terms of the localization

operator:

ηx [t − s] = T G
s γx [t ]. (5.3)

For a WSS signal, the autocorrelation function depends only on one parameter, t − s, and is

linked to the Power Spectral Density (PSD) through the Wiener-Khintchine Theorem [134].

The latter states that the PSD of the stochastic process x denotedγx [`] is the Fourier transform

of its auto-correlation :

γx [`] = 1p
N

N∑
i=1

ηx [t ]e− j 2π `t
N , (5.4)

where j = p−1. As a consequence, when a signal is convolved with a filter ȟ, its PSD is

multiplied by the energy of the convolution kernel: for y = ȟ ∗x , we have

γy [`] = |h[`]|2γx [`],

where h is the Fourier transform of ȟ. For more information about stationarity, we refer the

reader to [78].

When generalizing these concepts to graphs, the underlying structure for stationarity will no

longer be time, but graph vertices.

5.4 Stationarity of graph signals

We now generalize stationarity to graph signals. While we define stationarity through the local-

ization operator, Girault [45] uses an isometric translation operator instead. That proposition

is briefly described in Section 5.4.2, where we also show the equivallence of both definitions.

5.4.1 Stationarity under the localisation operator

Let x ∈RN be a stochastic graph signal with a finite number of variables indexed by the vertices

of a weighted undirected graph. The expected value of each variable is written x[i ] = E[x[i ]]

and the covariance matrix of the stochastic signal is Σx = E[(x −x)(x −x)∗
]
). We additionally

define x̃ = x − x . For discrete time WSS processes, the covariance matrix Σx is Toeplitz, or

circulant for periodic boundary conditions, reflecting translation invariance. In that case, the
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covariance is diagonalized by the Fourier transform. We now generalize this property to take

into account the intricate graph structure.

As explained in Section 3.1, the localization operator adapts a kernel to the graph structure.

As a result, our idea is to use the localization operator to adapt the correlation between the

samples to the graph structure. This results in a localised version of the correlation function,

whose properties can then be studied via the associated kernel.

Definition 24. A stochastic graph signal x defined on the vertices of a graph G is called Graph

Wide-Sense (or second order) Stationary (GWSS), if and only if it satisfies the following proper-

ties:

1. its first moment is constant over the vertex set: x[i ] = E[x[i ]] = c ∈R and

2. its covariance is invariant with respect to the localization operator:

Σx [i ,n] = E[(x[i ]−x[i ])(x[n]−x[n])
]= T G

i γx [n].

The first part of the above definition is equivalent to the first property of time WSS signals.

The requirement for the second moment is a natural generalization where we are imposing

an invariance with respect to the localization operator instead of the translation. It is a

generalization of Definiton 23 using (5.3). In simple words, the covariance is assumed to

be driven by a global kernel (filter) γx . The localization operator adapts this kernel to the

local structure of the graph and provides the correlation between the vertices. Additionally,

Definition 24 implies that the spectral components of x are uncorrelated.

Theorem 13. If a signal is GWSS, if and only if its covariance matrixΣx is jointly diagonalizable

with the Laplacian of G with3 γx (λ`) = u∗
`
Σx u`, i.e., Σx = UΓxU∗, where Γx is a diagonal

matrix.

Proof. By Definition 15, the covariance localization operator can be written as:

T G
i γx [n] = γx (L)[i ,n] = (Uγx (Λ)U∗)[i ,n] (5.5)

where γx (Λ) is a diagonal matrix satisfying γx (Λ)[`,`] = γx (λ`). To complete the proof set

Γx = γx (Λ).

The choice of the filter γx in this result is somewhat arbitrary, but we shall soon see that

we are interested in localized kernels. In that case, γx will be typically be the lowest degree

polynomial satisfying the constraints and can be constructed using Lagrange interpolation for

instance.

3If the graph Laplacian has an eigenspace of multiplicity greater than one, this condition implies that all
eigenvalues of the covariance matrix associated to this eigenspace are equal, i.e., if λ`1

= λ`2
, then u∗

`1
Σx`1 =

u∗
`2
Σx`2. On a ring graph, it ensures 1) that the Fourier transform of the PSD to be symmetric with respect of the 0

frequency, and 2) that the autocorrelation ηx is real and symmetric (See Theorem 2.)
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Definition 24 provides a fundamental property of the covariance. The size of the correlation

(distance over the graph) depends on the support of localized the kernel T G
i γx . In [117,

Theorem 1 and Corollary 2], it has been proved that the concentration of T G
i γx around i

depends on the regularity of γx (See Theorem 4). For example, if γx is polynomial of degree

K , it is exactly localized in a ball of radius K . Hence we will be mostly interested in such low

degree polynomial kernels.

The graph spectral covariance matrix of a stochastic graph signal is given by Γx = U∗ΣxU .

For a GWSS signal this matrix is diagonal and the graph power spectral density (PSD) of x

becomes:

γx (λ`) = (
U∗ΣxU

)
`,` . (5.6)

Table 5.1 presents the differences and the similarities between the classical and the graph

case. For a regular cyclic graph (ring), the localization operator is equivalent to the traditional

translation and we recover the classical cyclic-stationarity results by setting ηx = T G
0 γx . Our

framework is thus a generalization of stationarity to irregular domains.

Example 21 (Gaussian i.i.d. noise). Normalized Gaussian i.i.d. noise is GWSS for any graph.

Indeed, the first moment is E[x[i ]] = 0. Moreover, the covariance matrix can be written as

I = Σx =U IU∗ with any orthonormal matrix U and thus is diagonalizable with any graph

Laplacian. We also observe that the PSD is constant, which implies that similar to the classical

case, white noise contains all "graph frequencies".

When γx is a bijective function, the covariance matrix contains an important part of the graph

structure: the Laplacian eigenvectors. On the contrary, if γx is not bijective, some of the

graph structure is lost as it is not possible to recover all eigenvectors. This is for instance the

case when the covariance matrix is low-rank. As another example, let us consider completely

uncorrelated centered samples with variance 1. In this case, the covariance matrix becomes

Σx = I and loses all graph information, even if by definition the stochastic signal remains

stationary on the graph.

One of the crucial benefits of stationarity is that it is preserved by filtering, while the PSD is

simply reshaped by the filter. The same property holds on graphs.

Theorem 14. When a graph filter g is applied to a GWSS signal, the result remains GWSS, the

mean becomes g (L)x = xg (0) and the PSD satisfies:

γg (L)x (λ`) = |g (λ`)|2 ·γx (λ`). (5.7)

Proof. The output of a filter g can be written as x ′ = g (L)x̃ + g (L)x . If the input signal x is

GWSS, we can check easily that the first moment of the filter’s output is constant, E
[
g (L)x

]=
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g (L)E
[

x
]= g (0)x . The computation of the second moment gives:

E
[
g (L)x̃

(
g (L)x̃

)∗] = g (L)E
[

x̃ x̃∗]
g (L)∗

= g (L)Σx g (L)∗

= U g 2(Λ)γx (Λ)U∗,

which is equivalent to our claim.

Theorem 14 provides a simple way to artificially produce stationary signals with a prescribed

PSD by simply filtering white noise :

The resulting signal will be stationary with PSD g 2. In the sequel, we assume for simplicity

that the signal is centered at 0, i.e., x = 0. Note that the input white noise could well be

non-Gaussian.

Classical Graph

Stationary with respect to Translation Localization operator

First moment E[x[i ]] = x[i ] = c ∈R E[x[i ]] = x[i ] = c ∈R
Second moment Σx [i ,n] = E[x̃[i ])x̃∗[n]] = ηx [i −n] Σx [i ,n] = E[x̃[i ])x̃∗[n]] = γx (L)i ,n

(We use x̃ = x −x) Σx Toeplitz Σx diagonalizable with L

Wiener Khintchine γx (λ`) = 1p
N

∑N
i=1ηx [n]e− j 2π n`

N γx (λ`) = (Γx )`,` = (U∗ΣxU )`,`

Result of filtering γǧ∗x (λ`) = |g (λ`)|2 ·γx (λ`) γg (L)x [`] = |g (λ`)|2 ·γx (λ`)

Table 5.1 – Comparison between classical and graph stationarity. In the classical case, we work
with a N periodic discrete signal and we use ǧ to denote the inverse Fourier transform of g .

5.4.2 Comparison with the work of B. Girault

Stationarity for graph signals has been studied recently in [44, 45]. The proposed definition

is based on the isometric graph translation operator TB defined in Appendix B.1. Using this

operator, this stationarity definition is a natural extension of the classical case.

Definition 25. [44, Definition 16] A stochastic signal x on the graph G is Wide-Sense Stationary

(WSS) if and only if
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1. E[TB x] = E[x]

2. E[TB x (TB x)∗] = E[x x∗]

While this definition is based on a fairly different construction, the resulting notion of station-

arity is similar. We distinguish two cases: 1) In the case where all eigenvalues are disjoint, they

are equivalent. Indeed, [44, Theorem 7] says that if a signal is stationary with Definition 25,

then its first moment is constant and the covariance matrix in the spectral domain U∗ΣxU

has to be diagonal. Using Theorem 13, we therefore recover Definition 24. 2) In the case where

the graph has at least an eigenvalue with multiplicity, e.g., a ring graph, our Definition 24 is

more restrictive than Definition 25, since we need for every λ`1 =λ`2 , that γx (λ`1 ) = γx (λ`2 ).

As a result, there exist signals that are only stationary according to the Definition 25 of Girault,

but not according to our Definition 24. As a consequence, for real signals on a ring graph, our

definition forces the autocorrelation function to be symmetric, matching exactly the classical

stationarity Definition 23, whereas this is not true for Girault’s definition.

Let us consider as an example the ring graph with real sine/cosine Fourier basis. Note that a

different basis choice leads to the same conclusion. The stochastic signal x[i ] = w cos(2πi k
N ),

where w ∼ N (0,1). This signal is made of a single graph Fourier mode, i.e., x = wu2k−1. The

first moment is given by E[x] = u2k−1E[w] = 0 and the covariance matrix reads:

Σx [n, i ] = E[x[n]x[i ]] = cos

(
2πn

k

N

)
cos

(
2πi

k

N

)
.

To verify the stationary property of this signal, let us observe this quantity in the spectral

domain:

u∗
`1
Σx u`2 =

 N
4 if `1 = `2 = 2k −1

0 otherwise
.

This signal is not stationary according to the classical definition. Indeed it is not invariant with

respect to translation. To observe it, just compute 1 = E[x[N ]x[N ]] 6= E[x[ N
4k ]x[ N

4k ]
]= 0. Our

definition agrees to this: Applying Theorem 13, even if the covariance matrix in the spectral

domain is diagonal, we find that the signal is not stationary. Indeed, we cannot find a kernel

satisfying g (λ`) = u∗
`
Σx u` for all ` as we haveλ2k =λ2k−1 and 0 = u∗

2kΣx u2k 6= u∗
2k−1Σx u2k−1 =

N
4 . However, according to the definition by Girault, this signal is stationary [44, Theorem 7].

Another key difference is that our definition allows us to generalize the notion of PSD to the

graph setting in a simpler manner. To extend the notion of PSD using Girault’s definition, one

would have to deal with a block diagonal structure of the covariance matrix in the spectral

domain that changes depending on the choice of eigenvectors at eigenvalue multiplicities.4

4For a subspace associated with an eigenvalue with multiplicity greater than one, there exist multiple possible
sets of eigenvectors.
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5.4.3 Gaussian random field interpretation

The framework of stationary signals on graphs can be interpreted using Gaussian Marcov

Random Field (GMRF). Let us assume that the signal x is drawn from a distribution

P [x] = 1

Z
p(Lg )

1
2

e−(x−x)∗p(L)(x−x), (5.8)

where Z
p(Lg )

1
2
= ∫

RN e−x∗p(L)x dx . If we assume that p(L) is invertible, drawing from this

distribution will generate a stationary x with covariance matrix given by:

Σx = (
p(L)

)−1 = p−1(L).

In other words, assuming a GRF probabilistic model with inverse covariance matrix p(L)

leads to a stationary graph signal with a PSD = p−1. However a stationary graph signal is not

necessarily a GRF. Indeed, stationarity assumes statistical properties on the signal that are not

necessarily based on the Gaussian distribution.

In Section 3 of [42], Gadde and Ortega have presented a GMRF model for graph signals. But

they restrict themselves to the case where p(L) = L +δI . Following a similar approach, Zhang

et al. [138] link the inverse covariance matrix of a GMRF with the Laplacian. Our approach

is much broader than these two contributions since we do not make any assumption on the

function p(L). Finally, we exploit properties of stationary signals, such as the characterization

of the PSD, to explicitly solve signal processing problems in Section 5.6.

5.5 Estimation of the signal PSD

As the PSD is central in our method, we need a reliable and scalable way to compute it. Equa-

tion (5.6) suggests a direct estimation method using the Fourier transform of the covariance

matrix. We could thus estimate the covarianceΣx empirically from Ns realizations {xm}m=1...,M

of the stochastic graph signal x , as

Σ̇x [i ,n] = 1

M

M∑
m=1

(xm[i ]− ẋ[i ]))(xm[n]− ẋ[n])∗,

where ẋ[i ] =∑M
m=1 xm[i ]. Then our estimate of the PSD would read

γ̇x (λ`) = (U∗Σ̇xU )[`,`].

In fact, one can prove that this is equivalent to use the following estimator:

γ̇x (λ`) = 1

M

M∑
m=1

|x̂m[`]|2 . (5.9)

95



Chapter 5. Stationary signal processing on graphs

The accuracy of this estimator is determined by the number of samples M and the kurtosis of

the random graph signal.

Theorem 15. Given a stationary signal with second moment (PSD) E
[|x̂[`]|2]= γx and fourth

order moments (kurtosis) m̂4[`] = E[|x̂[`]|4]
E[|x̂[`]|2]2 = E[|x̂[`]|4]

γ2
x (λ`)

, the sample PSD estimator γ̇(λ`)

(a) is unbiased, E
[
γ̇x (λ`)

]= γx (λ`), and

(b) has variance Var
[
γ̇x (λ`)

]= γ2
x (λ`)

m̂4[`]−1

K
.

The proof is deferred in Appendix D.6.

Unfortunately, when the number of nodes is considerable, this method requires the diagonal-

ization of the Laplacian, an operation whose complexity in the general case scales as O
(
N 3

)
for the number of operations and O

(
N 2

)
for memory requirements. Additionally, when the

number of available realizations K is small, it is not possible to obtain a good estimate of

the covariance matrix. To overcome these issues, inspired by Bartlett [5] and Welch [133], we

propose to use a graph generalization of the Short Time Fourier transform [117] to construct a

scalable estimation method.

Bartlett’s method can be summarized as follows. After removing the mean, the signal is first

cut into equally sized segments without overlap. Then, the Fourier transform of each segment

is computed. Finally, the PSD is obtained by averaging over segments the squared amplitude

of the Fourier coefficients. Welch’s method is a generalization that works with overlapping

segments.

On the other hand, we can see the PSD estimation of both methods as the averaging over time

of the squared coefficients of a Short Time Fourier Transform (STFT). Let x be a realization of

a stochastic graph signal and x̃ = x −x with x[i ] = 1
N

∑N
n=1 x[n] = c , the classical PSD estimator

can thus be written as

γ̈x [`] =
∑N

n=1 (STFT{x̃} [`,n])2

N
∥∥g (λ)

∥∥2
2

,

where g is the window used for the STFT. This is shown in Figure 5.5. Here the factor N in the

denominator comes from the fact that the STFT is N times redundant.

Method Our method is based on this idea, using the windowed graph Fourier transform [117].

Instead of a translated rectangular window in time, we use a kernel g shifted by multiples of a

step τ in the spectral domain, i.e.,

gk (λ`) = g (λ`−kτ), k = 0. . . (K −1), τ= λmax

K −1
.
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Figure 5.5 – Illustration of the PSD estimation process for a temporal signal. Top right: original
PSD. Top left: a stationary signal. Bottom right: The squared modulus of the STFT of the signal.
Bottom left: Sum of the STFT squared coefficients over time. We observe that averaging the
squared STFT coefficients approximate well the PSD. This method is a version of to the Welch
method that is generalizable to graphs.

We then localize each spectral translation at each individual node of the graph. The coefficients

of the graph windowed Fourier transform can be seen as a matrix with elements

C [i ,k] = 〈x ,T G
i gk 〉 =

(
gk (L)x

)
[i ].

Our algorithm consists in averaging the squared coefficients of this transform over the vertex

set. Because graphs have an irregular spectrum, we additionally need a normalization factor

which is given by the norm of the window gk :
∥∥gm(λ)

∥∥2
2 =

∑
` g (λ`−kτ)2. Note that this norm

will vary for the different k. Our final estimator reads :

γ̈x (kτ) =
∥∥gk (L)x

∥∥2
2∥∥gk (λ)

∥∥2
2

=
∑N

i=1 C [i ,m]2∥∥gk (λ)
∥∥2

2

, (5.10)

where x is a single realization of the stationary stochastic graph signal. This estimator provides

a discrete approximation of the PSD. Interpolation is used to obtain a continuous estima-

tor. This approach avoids the computation of the eigenvectors and the eigenvalues of the
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Laplacian.

Our complete estimation procedure is as follows.

1. We design a filterbank by choosing a mother function g (for example a Gaussian

g (λ) = e−λ
2/σ2

or an Itersine as presented in (3.25)). A frame is then created by shifting

uniformly K times g in the spectral domain: gk (λ) = g (λ−kτ) = e−(λ−kτ)2/σ2
.

2. We compute the estimator γ̈x (kτ) from the stationary signal x . Note that if we have

access to M1 realizations {xm}m=1,...,M1 of the stationary signal, we can of course average

them to further reduce the variance.

3. We use the following trick to quickly approximate
∥∥gk

∥∥2
2. Using M2 randomly-generated

Gaussian normalized zero centered white signals w ∼ D(0, I ), we use from Lemma 3 the

fact that:

E
[∥∥gk (L)w

∥∥2
2

]
= ∥∥gk (λ)

∥∥2
2 .

The techniques is described in details in Section 3.2.2 and the approximation error is

characterized by Theorem 5.

4. The last step consists in computing the ratio between the two quantities and interpolat-

ing the discrete points (kτ,
(
g ∗γx

)
(kτ)).

Variance and bias of the estimator Studying the bias of (5.10) reveals its interest :

E
[∥∥gk (L)x̃

∥∥2
2

]
∥∥gk

∥∥2
2

=
∑N−1
`=0

(
g (λ`−kτ)

)2
γx (λ`)∑N−1

`=0

(
g (λ`−kτ)

)2 , (5.11)

where x is the stationary stochastic graph signal. For a filter g well concentrated at the origin,

(5.11) gives a smoothed estimate of γx (mτ). This smoothing corresponds to the windowing

operation in the vertex domain: the less localized the kernel g in the spectral domain, the

more pronounced the smoothing effect in (5.11) and the more concentrated the window

in the vertex domain. It is very interesting to note that we recover the traditional trade-off

between bias and variance in non-parametric spectral estimation. Indeed, if g is very sharply

localized on the spectrum, ultimately a Dirac delta, the estimator (5.10) is unbiased. Let us

now study the variance. Intuitively, if the signal is correlated only over small regions of the

vertex set, we could isolate them with localized windows of a small size and then average those

uncorrelated estimates together to reduce the variance. These small size windows on the vertex

set correspond to large band-pass kernels gk and therefore large biases. However, if those

correlated regions are large, and this happens when the PSD is localized in low frequencies,

we cannot hope to benefit from vertex-domain averaging since the graph is finite. Indeed

the corresponding windows gk on the vertex set are so large that a single window spans the

whole graph and there is no averaging effect: the variance increases precisely when we try to

suppress the bias.
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5.5. Estimation of the signal PSD

Theorem 16. Given a stationary signal x with bounded spectral second moment (the PSD) γx

and spectral fourth order moments m̂4 = E[(x̂−µ̂)4]
E[(x̂−µ̂)2]2 = E[(x̂−µ̂)4]

γ2
x

(the kurtosis) , the PSD estimator

γ̇x (λ`) defined in (5.10)

(a) has bias

∣∣E[γ̈x (kτ)−γx (kτ)
]∣∣≤ ε∥∥g (λ−kτ1)

∥∥2
2

N−1∑
`=0

g (λ`−kτ)2 |λ`−kτ| ,

where ε is the Lipschitz constant of γx (λ`), and

(b) has variance

Var
[
γ̈x (kτ)

]= γx (kτ)2∥∥g (λ−kτ1)
∥∥4

2

N−1∑
`=0

g (λ`−kτ)4 m̂4[`]−1

K
.

The proof is deferred in Appendix D.7.

Error analysis The difference between the approximation and the exact PSD is caused by

three different factors.

1. The inherent bias of the estimator, which is now directly controlled by the spreading of

the windows as shown in Theorem 16 a.

2. We estimate the expected value using M1 realizations of the signal (often M1 = 1). For

large graphs N À M1 and a few filters M ¿ N , this error is usually low because the

variance of
∥∥gk (L)x̃

∥∥2
2 is inversely proportional to the bias. In Theorem 16 b, given

that m̂[`] is constant, this is encoded by
∑N−1
`=0 g (λ`−kτ)4

‖g (λ−kτ1)‖4
2

= ‖g (λ−kτ1)‖4
4

‖g (λ−kτ1)‖4
2

that relates to the

spreading of the window g . If g is concentrated this factor is close to 1. However if g is

close to be constant, it becomes close to 1
N . We additionally observe that the estimation

error improves as 1
K .

3. We use a fast filtering method based on a polynomial approximation of the filter. For a

rough approximation, σÀ λmax
N , this error is usually negligible. However, in the other

cases, this error may become large.

Experimental assessment of the method Figure 5.6 shows the results of our PSD-estimation

algorithm on a 10-nearest neighbors graph of 20′000 nodes (random geometric graph, weighted

with an exponential kernel) and only M = 1 realization of the stationary graph signal. We

compare the estimation using frames of K = 10, 30, 100 Gaussian filters. The parameters σ

and τ are adapted to the number of filters such that the shifted windows have an overlap of

approximately 2 (τ= σ2 = (K+1)λmax

K 2 ). For this experiment M2 is set to 4 and the Chebysheff

polynomial order is 30 The estimated curves are smoothed versions of the PSD.

Complexity analysis The approximation scales with the number of edges of the graph O (E),

(which is proportional to N in many graphs). Precisely, our PSD estimation method necessi-
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Chapter 5. Stationary signal processing on graphs

Figure 5.6 – Left: PSD estimation on a graph of 20′000 nodes with M = 1 measurements. Our
algorithm is able to successively estimate the PSD of a signal. Right: Computation time versus
size of the graph (average over 10 runs.). We use K = 30 filters. The algorithm scales linearly
with the number of edges.

tates (M +M2)K filtering operations (with M the number of shifts of g ). A filtering operation

costs approximatively Oc E , with Oc the order of the Chebysheff polynomial and E the num-

ber of edges as detailled in Section 2.4. The final computational cost of the method is thus

O (Oc (M +M2)K E).

5.6 Graph Wiener filters and optimization framework

Using stationary signals, we can naturally extend the framework of Wiener filters [135] largely

used in signal processing for Mean Square Error (MSE) optimal linear prediction. Wiener

filters for graphs have already been succinctly proposed in [44, pp 100]. Since the construction

of Wiener filters is very similar for non-graph and graph signals, we present only the latter here.

The main difference is that the traditional frequencies are replaced by the graph Laplacian

eigenvalues5 λ`. Figure 5.7 presents the Wiener estimation scheme.

Graph Wiener filtering The Wiener filter can be used to produce a mean-square error optimal

estimate of a stationary signal under a linear but noisy observation model. Let us consider

the GWSS stochastic signal x with PSD of s2(λ`). For simplicity, we assume µ = x = 0. The

measurements y are given by:

y = h(L)x +wσ, (5.12)

where h(L) is a graph filter and wσ additive uncorrelated noise of PSD σ2(λ`).

5The graph eigenvalues are equivalent to classical squared frequencies.
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5.6. Graph Wiener filters and optimization framework

Figure 5.7 – Wiener estimation scheme. wσ is a centered random variable with covariance I .
ws generates the stationary stochastic signal x thanks to the filter s(L). The random variable y
is then generated by filtering x through h(L) and adding uncorrelated noise wσ with PSD n(λ).
The estimator of x given y : ẋ |y is obtained with the Wiener filter g (L). The estimation error is
denoted e. For clarity, we assume that x = 0.

To recover x , Wiener filters can be extended to the graph case:

g (λ`) = h(λ`)s2(λ`)

h2(λ`)s2(λ`)+n(λ`)
. (5.13)

The expression above can be derived by exactly mimicking the classical case and minimises

the expected quadratic error, which can be written as:

e[`] = E
[(

x̂[`]− ˆ̇x[`]
)2

]
= E[x̂[`]− g (λ`)ŷ[`]

]2 ,

where ẋ = g (L)y is the estimator of x given y . Theorem 19 proves the optimality of this filter

for the graph case.

Wiener optimization In this contribution, we would like to address a more general problem.

Let us suppose that our measurements are generated as:

y = H x +wσ, (5.14)

where the GWSS stochastic graph signal x has a PSD denoted as γx (λ`) = s2(λ`) and the noise

wσ a PSD of σ2(λ`). We assume x and wσ to be uncorrelated. H is a general linear operator

not assumed to be diagonalizable with L. As a result, we cannot build a Wiener filter that

constructs a direct estimation of the signal x . If x varies smoothly on the graph, i.e., is low

frequency based, a classic optimization scheme would be the following:

ẋ |y = argmin
x

∥∥H x − y
∥∥2

2 +βx∗Lx . (5.15)

This optimization scheme presents two main disadvantages. Firstly, the parameter β must be

tuned in order to remove the best amount of noise. Secondly, it does not take into account the

data structure characterized by the PSD s2(λ`).

Our solution to overcome these issues is to solve the following optimization problem that we
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Chapter 5. Stationary signal processing on graphs

suggestively call Wiener optimization

ẋ |y = argmin
x

∥∥H x − y
∥∥2

2 +
∥∥w(L)(x −µ)

∥∥2
2 , (5.16)

where w(λ`) is the Fourier penalization weights. These weights are defined as

w(λ`) =
∣∣∣∣σ(λ`)

s(λ`)

∣∣∣∣= 1√
SNR(λ`)

.

Notice that compared to (5.15), the parameter β is exchanged with the PSD of the noise. As a

result, if the noise parameters are unknown, Wiener optimization does not completely solve

the issue of finding the regularization parameter. In the noise-less case, one can alternatively

solve the following problem

x̄ = argmin
x

∥∥s−1(L)(x −µ)
∥∥2

2 , s. t. H x = y . (5.17)

Problem (5.16) generalizes Problem (5.15) which assumes implicitly a PSD of 1
λ`

and a con-

stant noise level of γ across all frequencies. Note that this framework generalizes two main

assumptions done on the data in practice:

1. The signal is smooth on the graph, i.e., the edge derivative has a small `2-norm. As seen

before this is done by setting the PSD as 1
λ`

. This case is studied in [46].

2. The signal is band-limited, i.e., it is a linear combination of the k lowest graph Laplacian

eigenvectors. This class of signal simply have a null PSD for λ` >λk .

Theoretical motivations for the optimization framework The first motivation is intuitive.

The weight w(λ`) heavily penalizes frequencies associated to low SNR and vice versa.

The second and main motivation is theoretical. If we have a Gaussian Random multivariate

signal with i.i.d. Gaussian noise, then Problem (5.16) is a MAP estimator.

Theorem 17. If x ∼ N
(
0, s2(L)

)
and wσ ∼ N

(
0,σ2

)
, i.e., u is GWSS and Gaussian, then prob-

lem (5.16) is a MAP estimator for x |y

The proof is given in Appendix D.2.

Theorem 18. If x is GWSS with PSD s2(L) and mean µ, wσ is i.i.d. white noise, then prob-

lem (5.16) leads to the linear minimum mean square estimator:

ẋ |y = Σx yΣ
−1
y y +

(
I −Σx yΣ

−1
y H

)
µ (5.18)

with Σx y = s2(L)H∗ and Σy = H s2(L)H∗

The proof is given in Appendix D.4.
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5.6. Graph Wiener filters and optimization framework

Additionally, when H is jointly diagonalizable with L, Problem (5.16) can be solved by a single

filtering operation.

Theorem 19. If the operator H is diagonalizable with L, (i.e., H = h(L) = U a(Λ)U∗), then

problem (5.16) is optimal with respect of the weighting w(L) in the sense that its solution

minimizes the mean square error:

E
[‖e‖2

2

]= E[‖ẋ −x‖2
2

]= E[ N∑
i=1

(ẋ[i ]−x[i ])2

]
.

Additionally, the solution can be computed by the application of the corresponding Wiener filter.

The proof is given in Appendix D.3.

The last motivation is algorithmic and requires the knowledge of proximal splitting meth-

ods [25, 58]. Problem (5.16) can be solved by a splitting scheme that minimizes iteratively

each of the terms. The minimization of the regularizer, i.e., the proximal operator of ‖w(L)x̃‖2
2,

becomes a Wiener de-noising operation:

prox 1
2 ‖w(L))x̃‖2

2
(y) = µ+argmin

x̃

∥∥w(Λ)U∗x̃
∥∥2

2 +
∥∥x̃ − ỹ

∥∥2
2

= µ+ g (L)ỹ =µ+ g (L)(y −µ)

with

g (λ`) = 1

1+w2(λ`)
= s2(λ`)

s2(λ`)+σ2(λ`)
.

Advantage of the Wiener optimization framework over a Gaussian MAP estimator Theo-

rem 17 shows that the optimization framework is equivalent to a Gaussian MAP estimator.

In practice, when the data is only close to stationary, the true MAP estimator will perform

better than Wiener optimization. So one could ask why we bother defining stationarity on

graphs. Firstly, assuming stationarity leads us for a more robust estimate of the covariance

matrix. This is shown in Figure 5.6, where only one signal is used to estimate the PSD (and

thus the covariance matrix). Another example is the USPS experiment presented in the next

section. We estimate the PSD by using only 20 digits. The final result is much better than a

Gaussian MAP based on the empirical covariance. Secondly, we have a scalable solution for

Problem (5.16) (See Algorithm 4 below). On the contrary the classical Gaussian MAP estimator

requires the explicit computation of a large part of the covariance matrix and its inverse, which

are both not scalable operations.

Solving Problem (5.16) Note that Problem (5.16) can be solved with a simple gradient descent.

However, for a large number of nodes N , the matrix w(L) requires O
(
N 3

)
operations to

be computed and O
(
N 2

)
bits to be stored. This difficulty can be overcome by applying
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Chapter 5. Stationary signal processing on graphs

its corresponding filter operator at each iteration. As already mentioned, the cost of the

approximation scale with the number of edges O (Oc |E |) [126].

When s(λ`) ≈ 0 for someλ` the operator w(L) becomes badly conditioned. To overcome this is-

sue, Problem (5.16) can be solved efficiently using a forward-backward splitting scheme [26, 25,

58]. The proximal operator of ‖w(L)x̃‖2
2 has been given above and we use the term

∥∥H x − y
∥∥2

2

as the differentiable function. Algorithm 4 uses an accelerated forward backward scheme [6] to

solve Problem (5.16) where β is the step size (we select β= 1
2λmax(H)2 ), ε the stopping tolerance,

J the maximum number of iterations and δ is a very small number to avoid a possible division

by 0.

Algorithm 4 Fast Wiener optimization to solve (5.16)

1: INPUT: z1 = y , u0 = y , t1 = 1, ε> 0, β≤ 1
2λmax(H)2

2: SET: g (λ) = s2(λ)
s2(λ)+βσ2(λ) . Wiener filter

3: for j = 1, . . . J do
4: v = z j −βH∗(H z j − y) . Gradient step
5: u j+1 = g (L)v . Proximal step

6: t j+1 =
1+

√
1+4t 2

j

2 . FISTA scheme

7: z j+1 = z j + t j−1
t j+1

(u j −u j−1) . Update step

8: if
‖z j+1−z j‖2

F

‖z j‖2
F+δ

< ε then . Stopping criterion

9: BREAK
10: end if
11: end for
12: SOLUTION: z J

5.7 Evidence of graph stationarity: illustration with USPS

Stationarity may not be an obvious hypothesis for a general dataset, since our intuition does

not allow us to easily capture the kind of shift invariance that is really implied. In this section

we give additional insights on stationarity from a more experimental point of view. To do so,

we will show that the well-known USPS dataset is close to stationary on a nearest neighbor

graph. We show similar results with a dataset of faces.

Images can be considered as signals on the 2-dimensional euclidean plane and, naturally,

when the signal is sampled, a grid graph is used as a discretization of this manifold. The

corresponding eigenbasis is the 2 dimensional DCT.6 Many papers have exploited the fact that

natural texture images are stationary 2-dimensional signals [32], i.e., stationary signals on the

grid graph. In [104], the authors go one step further and ask the following question: suppose

that pixels of images have been permuted, can we recover their relative two-dimensional

6This is a natural extension of [125]
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5.7. Evidence of graph stationarity: illustration with USPS

Data \Graph 2-dimensional grid 20 nearest neighbors graph

Shifted all digits 0.86 1
All digits 0.66 0.79
Digit 3 0.64 0.83
Digit 7 0.52 0.79
Digit 9 0.52 0.81

Table 5.2 – sr (Γ) = ‖diag(Γ)‖2
‖Γ‖F

: stationarity measures for different graphs and different datasets.
The nearest neighbors graph adapts to the data. The individual digits are stationary with the
nearest neighbor graph.

location? Amazingly, they answer positively adding that only a few thousand images are

enough to approximately recover the relative location of the pixels. The grid graph seems

naturally encoded within images.

The observation of [104] motivates the following experiment involving stationarity on graphs.

Let us select the USPS data set which contains 9298 digit images of 16×16 pixels. We create

5 classes of data: (a) the circularly shifted digits,7 (b) the original digits and (c), (d) and (e)

the classes of digit 3, 7 and 9. As a pre-processing step, we remove the mean of each pixel,

thus forcing the first moment to be 0, and focus on the second moment. For those 5 cases, we

compute the covariance matrix Σ and its "Fourier transform",

Γ=U∗ΣU , (5.19)

for 2 different graphs: (a) the grid and (b) the 20 nearest neighbors graph. In this latter case,

each node is a pixel and is associated to a feature vector containing the corresponding pixel

value of all images. We use the squared euclidean distance between feature vectors and

an exponential kernel to define edge weights (Graph 3 with k = 20). We then compute the

stationarity level of each class of data with both graphs using the following measure:

sr (Γ) =
( ∑

`Γ[`,`]2∑
`1

∑
`2
Γ[`1,`2][`,`]2

) 1
2

=
∥∥diag(Γ)

∥∥
2

‖Γ‖F
. (5.20)

The closer sr (Γ) is to 1, the more diagonal the matrix Γ is and the more stationary the signal.

Table 5.2 shows the obtained stationarity measures. The less universal the data, the less

stationary it is on the grid. Clearly, specificity inside the data requires a finer structure than a

grid. This is confirmed by the behavior of the nearest neighbors graph. When only one digit

class is selected the nearest neighbors graph still yields very stationary signals.

Let us focus on the digit 3. For this experiment, we build a 20 nearest neighbors graph with

only 50 samples. Figure 5.8 shows the eigenvectors of the Laplacian and of the covariance

matrix. Because of stationarity, they are very similar. Moreover, they have a 3-like shape. Since

7We performed all possible shifts in both directions. Because of this, the covariance matrix becomes Toeplitz
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the data is almost stationary, we can use the associated graph and the PSD to generate samples

by filtering i.i.d Gaussian noise with the following PSD based kernel: g (λ`) =
√
Γ[`,`]. The

resulting digits have a 3-like shape confirming the that the class is stationary on the nearest

neighbors graph.

Figure 5.8 – Studying the number 3 of USPS using a 20-neighbors graph. Top left: Spectral
covariance matrix of the data (Note the diagonal shape of the matrix). We only display the
upper left part for better visibility. Top right: generated samples by filtering Gaussian random
noise on the graph. Bottom left: Covariance eigenvectors associated with the 16 highest
eigenvalues. Bottom right: Laplacian eigenvectors associated to the 16 smallest non-zero
eigenvalues. Because of stationarity, Laplacian eigenvectors are similar to the covariance
eigenvectors.

To further illustrate this phenomenon on a different dataset, we use the CMUPIE set of cropped

faces. With a nearest neighbor graph we obtained a stationarity level of sr = 0.92. This has

already been observed in [53] where the concept of Laplacianfaces is introduced. Finally

in [110] the authors succesfully use the graph between features to improve the quality of a

low-rank recovery problem. The reason seems to be that the principal components of the data

are the lowest eigenvectors of the graph, which is again a stationarity assumption.

To intuitively motivate the effectiveness of nearest neighbors at producing stationary signals,

let us define the centering operator J = I −11>/N . Given M signals xm , the matrix of average

squared distances between the centered features (
∑N

i=1 xm[i ] = 0) is directly proportional to
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the covariance matrix :

Σ̄x =−1

2
JD J , (5.21)

where D[i ,n] = 1
M

∑M
m=1 (xm[i ]−xm[n])2 and Σ̇x [i ,n] = 1

M

∑M
m=1 xm[i ]xm[n]. The proof is

given in Appendix D.5. The nearest-neighbors graph can be seen as an approximation of the

original distance matrix, which pleads for using it as a good proxy destined at leveraging the

spectral content of the covariance. Put differently, when using realizations of the signal as

features and computing the k-NN graph we are connecting strongly correlated variables via

strong edge weights.

5.8 Experiments

All experiments were performed with the GSPBox [86] and the UNLocBoX [87] two open-

source softwares. The code to reproduce all figures of the paper can be downloaded at:

https://lts2.epfl.ch/rrp/stationarity/. As the stationary signals are random, the reader may

obtain slightly different results. However, conclusions shall remain identical. The models used

in our comparisons are detailed in the Appendix D.1 for completeness, where we also detail

how the tuning of the parameters is done. All experiments are evaluated with respect to the

Signal to Noise Ratio (SNR) measure:

SNR(x, ẋ) =−10log

(
Var[x − ẋ]

Var[x]

)

5.8.1 Synthetic dataset

In order to obtain a first insight into applications using stationarity, we begin with some

classical problems solved on a synthetic dataset. Compared to real data, this framework allows

us to be sure that the signal is stationary on the graph.

Graph Wiener deconvolution We start with a de-convolution example on a random geometric

graph. This can model an array of sensors distributed in space or simply a mesh. The signal

is chosen with a low frequency band-limited PSD. To produce the measurements, the signal

is convolved with the heat kernel h(λ) = e−τλ. Additionally, we add some uncorrelated i.i.d

Gaussian noise. The heat kernel is chosen because it simulates a heat diffusion process. Using

de-convolution we aim at recovering the original signal before diffusion. For this experiment,

we put ourselves in an ideal case and suppose that both the PSD of the input signal and the

noise level are known.

Figure 5.9 presents the results. We observe that Wiener filtering is able to de-convolve the

measurements. The second plot shows the reconstruction errors for three different methods:

Tikhonov presented in problem (D.2), TV in (D.4) and Wiener filtering in (5.13). Wiener

filtering performs clearly much better than the other methods because it has a much better
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prior assumption.

Figure 5.9 – Graph de-convolution on a geometric random graph. The convolution kernel

is e−
10x
λmax . Top: Signal and filters for a noise level of 0.16. Bottom: evolution of the error with

respect of the noise.

Graph Wiener in-painting In our second example, we use Wiener optimization to solve an in-

painting problem. This time, we suppose that the PSD of the input signal is unknown and we

estimate it using 50 signals. Figure 5.10 presents quantitative results for the in-painting. Again,

we compare three different optimization methods: Tikhonov (D.1), TV (D.4) and Wiener (5.16).

Additionally we compute the classical MAP estimator based on the empirical covariance

matrix (See [97] 2.23). Wiener optimization performs clearly much better than the other

methods because it has a much better prior assumption. Even with 50 measurements, the

MAP estimator performs poorly compared to graphs method. The reason is that the graph

contains a lot of the covariance information. Note that the PSD estimated with only one

measurement is sufficient to outperform Tikhonov and TV.

5.8.2 Meteorological dataset

We apply our methods to a weather measurements dataset, more precisely to the temperature

and the humidity. Since intuitively these two quantities are correlated smoothly across space,

it suggests that they are more or less stationary on a nearest neighbors geographical graph.

The French national meteorological service has published in open access a dataset8 with

hourly weather observations collected during the Month of January 2014 in the region of Brest

(France). From these data, we wish to ascertain that our method still performs better than

the two other models (TV and Tikhonov) on real measurements. The graph is built from the

coordinates of the weather stations by connecting all the neighbors in a given radius with a

8Access to the raw data is possible directly through our code or through the link https://donneespubliques.
meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz
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Figure 5.10 – Wiener in-painting on a geometric graph of 400 nodes. Top: true VS approximated
PSD and resulting Wiener filters. Bottom: in-painting relative error with respect to number of
measurements.

weight function W [i ,n] = e−d 2
i nτ where τ is adjusted to obtain a average degree around 3 (τ,

however, is not a sensitive parameter). For our experiments, we consider every time step as an

independent realization of a GWSS signal. As sole pre-processing, we remove the temperature

mean of each station independently. This is equivalent to removing the first moment. Thanks

to the 744 time observation, we can estimate the covariance matrix and check whether the

signal is stationary on the graph.

Prediction - Temperature The result of the experiment with temperatures is displayed in

Figure 5.11. The covariance matrix shows a strong correlation between the different weather

stations. Diagonalizing it with the Fourier basis of the graph shows that the meteorological

instances are not really stationary within the distance graph as the resulting matrix is not

really diagonal. However, even in this case, Wiener optimization still outperforms graph TV

and Tikhonov models, showing the robustness of the proposed method. In our experiment,

we solve an prediction problem with a mask operator covering 50 per cent of measurements

and an initial average SNR of 13.4 dB . We then average the result over 744 experiments

(corresponding to the 744 observations) to obtain the curves displayed in Figure 5.11. We

observe that Wiener optimization performs always better than the two other methods.

Prediction - Humidity Using the same graph, we have performed another set of experiments

on humidity observations. In our experiment, we solve an prediction problem with a mask

operator covering 50% of measurements and various amounts of noise. The rest of the testing

framework is identical as for the temperature and the conclusions are similar.
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Figure 5.11 – Top: Covariance matrices. Bottom left: A realization of the stochastic graph
signal (first measure). Bottom center: the temperature of the Island of Brehat. Bottom right:
Recovery errors for different noise levels.

5.8.3 USPS dataset

We perform the same kind of in-painting/de-noising experiment with the USPS dataset. For

our experiments, we consider every digit as an independent realization of a GWSS signal.

As sole pre-processing, we remove the mean of each pixel separately. This ensures that the

first moment is 0. We create the graph9 and estimate the PSD using only the first 20 digits

and we use 500 of the remaining ones to test our algorithm. We use a mask covering 50%

of the pixel and various amount of noise. We then average the result over 500 experiments

(corresponding to the 500 digits) to obtain the curves displayed in Figure 5.13.10 For this

9The graph is created using patches of pixels of size 5×5. The pixels’ patches help because we have only a few
digits available. When the size of the data increases, a nearest neighbor graph performs even better.

10All parameters have been tuned optimally in a probabilistic way. This is possible since the noise is added
artificially. The models presented in Appendix D.1 have only one parameter to be tuned: εwhich is set to ε=σ√

#y ,
where σ is the variance of the noise and #y the number of elements of the vector y . In order to be fair with the
MAP estimator, we construct the graph with the only 20 digits used in the PSD estimation.
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5.8. Experiments

Figure 5.12 – Top: Covariance matrices. Bottom: Recovery errors for different noise levels.

experiment, we also compare to traditional TV de-noising [17] and Tikhonov de-noising. The

optimization problems used are similar to (D.1). Additionally we compute the classical MAP

estimator based on the empirical covariance matrix for the solution see ([97] 2.23). The results

presented in Figure 5.13 show that graph optimization is outperforming classical techniques

meaning that the grid is not the optimal graph for the USPS dataset. Wiener once again

outperforms the other graph-based models. Moreover, this experiment shows that our PSD

estimation is robust when the number of signals is small. In other words, using the graph

allows us for a much better covariance estimation than a simple empirical average. When

the number of measurements increases, the MAP estimator improves in performance and

eventually outperforms Wiener because the data is close to stationary on the graph.

5.8.4 ORL dataset

For this last experiment, we use the ORL faces dataset. We have a good indication that this

dataset is close to stationary since CMUPIE (a smaller faces dataset) is also close to stationary.

Each image has 112×92 = 10304 pixels making it complicated to estimate the covariance

matrix and to use a Gaussian MAP estimator. Wiener optimization on the other hand does not

necessitate an explicit computation of the covariance matrix. Instead, we estimate the PSD

using the algorithm presented in Section 5.5. A detailed experiment is performed in Figure 5.14.

After adding Gaussian noise to the image, we remove randomly a percentage of the pixels.

We consider the obtained image as the measurement and we reconstruct the original image

using TV, Tikhonov and Wiener priors. In Figure 5.15, we display the reconstruction results for

various noise levels. We create the graph with 300 faces11 and estimate the PSD with 100 faces.

We test the different algorithms on the 100 remaining faces.

11We build a nearest neighbor graph based on the pixels values.
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Chapter 5. Stationary signal processing on graphs

Figure 5.13 – Top left: Some digits of the USPS dataset. Top right: Different PSDs. Compared
to 1

λ , the approximation is a smoothed version of the experimental PSD. Middle left: Weights
matrix of the 10 nearest neighbors (patch) graph (The diagonal shape indicates the grid
base topology of the graph). Middle right: spectral covariance matrix for the first 50 graph
frequencies. Since we only use 20 digits for the graph construction, the stationarity level is
low. Nevertheless, Wiener optimization outperforms other methods. Bottom: Recovery errors
for different noise levels. Methods using the graph perform better. Even if the data is not
stationary on the graph, the stationarity assumption helps a lot in the recovery.
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5.8. Experiments

Figure 5.14 – ORL dataset, single in-painting experiment. Top left: Original image. Top center:
Noisy image (SNR 12.43 dB). Top right: Measurements 50% of the noisy image. Bottom left:
Reconstruction using Tikhonov prior (SNR 12.12 dB). Bottom center: Reconstruction using
classic TV prior (SNR 13.53 dB). Bottom right: Reconstruction using Wiener optimization (SNR
14.42 dB).

Figure 5.15 – Inpainting experiment on ORL dataset. Left: some images of the dataset. Right:
reconstruction error.
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6 Manifold regularization via graph
total variation

6.1 Introduction

Up to this point, we have been exclusively working on the graph vertices and we have not

developed any technique able to handle new samples without having to recompute a new

solution. This limits the practical use of many GSP techniques as they become unsuitable for

online applications where most of the computations have to be performed in advance and

only a small amount of computational power is available for each new coming sample. One

solution to overcome this issue is the pre-computation of a global solution that covers not

only the graph vertices, but the entire space.

It can be done using Reproducing Kernel Hilbert Spaces (RKHS) as they provide a convenient

way to find a function characterizing the entire space [81]. Furthermore, thanks to the repre-

senter Theorem, it is possible to transform an infinite dimensional problem into another one

that is not only finite but usually also tractable without any tradeoff or relaxation.

6.1.1 Learning with Reproducing Kernel Hilbert Spaces

Given a Mercer kernel K : M ×M →R (self-adjoint positive definite), we know (Moore RKHS-

Aronszajn theorem) that there exists a unique Hilbert Space HK of functions on M → R for

which K is a reproducing kernel. Let us denote ‖·‖K the corresponding norm. Given a set of

M labeled point (xi , yi ), the standard framework estimates the unknown label function by

solving:

ḟ = argmin
f ∈HK

1

M

M∑
i=1

V (xi , yi , f (xi ))+γ∥∥ f
∥∥2

K , (6.1)

where V is a loss function. Traditional choices include the squared loss function ( f (xi )−
yi )2 and Hinge loss function max[0,1− yi f (xi )] used by support vector machine (SVM). The
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representer theorem [109] states that the solution of (6.1) can be written as

ḟ (x) =
M∑

i=1
α[i ]K (xi , x). (6.2)

Therefore, we only need to search for the M-dimensional vector α to find ḟ .

6.1.2 Semi-supervised learning

As illustrated in Figure 5.1, graphs are a predilection tool to include unlabeled samples in the

problem. Also, the unlabeled samples do not carry direct information on the label function f ,

they inform on the manifold shape and can substantially improve the learning process (See

Figure 5.1). This idea has been developed by Belkin and Niogi in [7], where they propose to

solve the following problem:

ḟ = argmin
f ∈HK

1

M

M∑
i=1

V (xi , yi , f (xi ))+γK
∥∥ f

∥∥2
K +γM

∫
x∈M

∥∥∇M f (x)
∥∥2

2 dµ(x), (6.3)

where µ is the Lebesgue measure associated with the manifold M . In general the manifold is

unknown and we cannot compute the integral
∫

x∈M
∥∥∇M f (x)

∥∥2
2 dµ(x). Nevertheless, it can be

approximated using a graph built from both the labeled and unlabeled points. Given N points

xi where only the M first ones are labeled, the optimization problem can be formulated as

ḟ = argmin
f ∈HK

1

M

M∑
i=1

V (xi , yi , f (xi ))+γK
∥∥ f

∥∥2
K + γM

N

∥∥∇G f
∥∥2

2 , (6.4)

where ∇G is a combinatorial graph gradient created from all the N points and f [i ] = f (x[i ])

(
∥∥∇G f

∥∥2
2 = f ∗L f ). Problem (6.4) approximates problem (5.15) because the graph Laplacian

L = ∇∗
G∇G converges toward the Laplace-Beltrami operator ∆M = ∇∗

M ∇M of the manifold

M [8, 9]. According to the representer theorem [7], the problem (6.4) admits a solution of the

form

ḟ (x) =
N∑

i=1
α[i ]K (x , xi ).

It is important to notice that the vector α has N elements, compared to (6.2), where α has

only M elements, i.e., unlabeled samples add degrees of freedom to the solution.

6.1.3 Total variation and Tikhonov regularization

Problem (6.3) is well suited for functions with slow variations. However, it is not adapted

to piecewise constant functions with high localized derivatives. To solve this problem, we

propose to replace the Tikhonov regularizer
∫

x∈M
∥∥∇M f (x)

∥∥2
2 dµ(x) by the Total Variation (TV)
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norm on the manifold∥∥ f
∥∥

M −T V =
∫

x∈M

∥∥∇M f (x)
∥∥

2 dµ(x). (6.5)

While the Tikhonov regularizer does not penalize small derivative changes favoring “functions

with slow variations”, the total variation norm is less affected by large derivative changes, thus

favoring “piecewise flat functions”. An illustration of the differences is shown in Figure 6.1

where both regularizers are compared.

Figure 6.1 – Difference between the Tikhonov and the TV regularizers. Given the function
y (in green), we compare the two solutions ḟ1 = argmin f

∥∥ f − y
∥∥2

2 +
∥∥∇ f

∥∥2
2 in red and ḟ2 =

argmin f

∥∥ f − y
∥∥2

2 +
∥∥∇ f

∥∥
1 in blue. The TV regularizer favors sparse gradient leading to a

piecewise constant function.

Interestingly the same concept applies to graphs. In Figure 6.2, we show the difference between

the TV and the Tikhonov regularization for a graph signal. Let us illustrate the difference with

a piecewise constant graph signal. Given the measurements y = M x , where M is a linear

masking operator, we use the two following optimization problems:

ẋ1 = argmin
z

∥∥∇G z
∥∥2

2 such that M z = y (6.6)

and,

ẋ2 = argmin
z

∥∥∇G z
∥∥

1 such that M z = y , (6.7)

to recover x . In the solution of problem (6.6), the missing values are an averaging of their

neighbors leading to a smooth transition between the positive and negative parts of the graph

signal. On the contrary, in the solution of problem (6.7), the signal is piecewise constant

because the total variation norm favors sparse gradient.
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Figure 6.2 – Difference between the Tikhonov and the TV regularizers on graphs. Given the
measurement y , we compare the two solutions of problems (6.6) and 6.7 (respectively bottom
left and right). The TV regularizer favors piecewise constant signals and thus provides a more
accurate solution.

6.1.4 Problem formulation

Let us suppose that the function f is piecewise constant on the manifold M . As illustrated in

Figure 6.1, it will have a small total variation norm. Using this prior, we formulate the following

new optimization problem

ḟ = argmin
f ∈HK

1

M

M∑
i=1

V (xi , yi , f (xi ))+γK
∥∥ f

∥∥2
K +γM

∥∥ f
∥∥

T V −M , (6.8)

where∥∥ f
∥∥

T V −M =
∫

x∈M

∥∥∇M f (x)
∥∥

2 dµ(x). (6.9)

Problematically, in most of the cases, we cannot compute
∥∥ f

∥∥
T V −M because the manifold is

not known. Fortunately, similarly to the Tikhonov case, the TV norm on the manifold can be
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approximated by the TV norm on a graph. As a result, we propose to solve:

ḟ = argmin
f ∈HK

1

M

M∑
i=1

V (xi , yi , f (xi ))+γK
∥∥ f

∥∥2
K + γM

N

∥∥ f
∥∥

T V −G , (6.10)

where

∥∥ f
∥∥

T V −G = ∥∥∇G f
∥∥

1 =
N∑

i=1,n=1

√
W [i ,n]

∣∣ f [n]− f [i ]
∣∣ . (6.11)

The transformation from problem (6.8) to problem (6.10) is intuitive considering the work of

Belkin and Niogi. However, it is motivated only if the two following requirements are satisfied:

1. the representer Theorem applies to (6.10), and

2. the TV norm on graphs converges toward the TV norm on the manifold as the number

of samples increases.

These results are proved in Section 6.3.

6.2 Practical use of manifold regularization

Before presenting the theoretical results, let us explain how problem (6.10) is solved in practice.

Let us select the squared `2 norm as a cost function, i.e., V (xi , yi , f (xi )) = (
f (xi )− yi

)2. Let

K be the positive definite N ×N matrix such that K [i ,n] = K (xi , xn) and M be the masking

operator selecting the M labeled samples. Then, thanks to Theorem 20, the solution of

problem (6.10) is given by ḟ (x) =∑N
i=1 α̇[i ]K (x , xi ) where

α̇= argmin
α

N

M

∥∥MKα− y
∥∥2

2 +γKα
∗Kα+γM

∥∥∇G Kα
∥∥

1 . (6.12)

Problem 6.12 is convex and can be solved using proximal splitting methods [25]. We cannot use

a gradient descent since the objective function is not differentiable. Numerically, primal-dual

approaches [58] provide the most suitable algorithms to solve (6.12).

Example 22 (One dimensional manifold). Let us consider the one-dimensional manifold

contained in the segment between 0 and 1. The label function f is defined as the step

f (x) =
1 if x > 0.5

−1 otherwise.

Given M = 50 labeled and N−M = 450 unlabeled points, using the same cost function V (xi , yi , f (xi )) =
N
M

(
yi − f (xi )

)2, we compare three different regularizations:

1. the RKHS norm γK
∥∥ f

∥∥
K ,

2. the RKHS norm and the graph Tikhonov γK
∥∥ f

∥∥
K +γM

∥∥∇G f
∥∥2

2, and
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3. the RKHS and the graph TV norms γK
∥∥ f

∥∥
K +γM

∥∥∇G f
∥∥

1.

The results are displayed in Figure 6.3. First, we observe that, if the unlabeled samples are not

included in the learning process, the algorithm does not recover the function where labeled

points are missing. Second, the Tikhonov graph regularizer fixes this issue but leads to a function

with slow variations. Finally, the TV regularization is clearly the most suitable, as it is the only

one to promote a piecewise constant function.

Figure 6.3 – Comparison between 3 different regularization schemes. The TV regularizer is
required to recover a piecewise constant function.

6.3 Main theoretical results

Let us now establish the theoretical results that are the core of this chapter. We start with the

representer theorem that permits us to compute the solution of problem (6.10).

Theorem 20 (Representer Theorem for problem 6.10). Let M be a compact manifold and

K : M ×M → R a positive semi-definite kernel with a corresponding Hilbert space HK . The

minimizer of optimization problem (6.10) admits an expansion

ḟ (x) =
N∑

i=1
α[i ]K (x , xi )

in terms of labeled and unlabeled examples.

Proof. The last term of the optimization problem depends on xi and f (xi ). As a result, opti-

mization problem (6.10) we can simply apply [109, Theorem 1 (Nonparametric Representer

Theorem)] with g (x) = x and c((x1, y1, f (x1)), . . . , (xN , yN , f (xN ))) = 1
M

∑M
i=1 V (xi , yi , f (xi ))+

γM
N

∥∥∇G f
∥∥

1 .

Let us now focus on the convergence proofs. We consider a k-dimensional compact smooth
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manifold M embedded in RT . The gradient of a C 1(M ) function f evaluated in x is given by

∇M f (x). It is a vector pointing in the direction of the fastest ascent of f . Note that the gradient

evaluated in x lives in the tangent space of the point x : TM (x) ∈ Rk . For convenience, we

define the linear operator ∇G ,vi to be the gradient vector at node vi :

(∇G ,vi x
)

[n] = ∂x

∂ei n
=

√
W [i ,n] (x[n]−x[i ]) . (6.13)

Given a set of N points {xi }i=1...N , we associate a complete weighted graph where each xi is

associated to the vertex vi and we define the edges’ weights to be:

W (vi , vn) =W [i ,n] = e
‖xi −xn‖2

2
4t , (6.14)

where t is a positive constant depending on N . Using this special weight function, Belkin and

Niogi have shown that the graph Laplacian converges to the Laplace-Beltrami operator of the

manifold M .

Theorem 21 (Theorem 3.1 of [8], Laplacian convergence). Let data points x1, . . . , xN be sampled

from a uniform distribution on a manifold M ⊂RT . Using the weight function (6.14), define a

sequence tN = N− 1
k+2+α , where α> 0 and let f ∈ C∞(M ), then the following holds:

lim
N→∞

1

tN (4πtN )
k
2

(L f )[i ] = 1

vol(M )
(∆M f )(xi ) (6.15)

where the limit is taken in probability and vol(M ) is the volume of the manifold with respect to

the canonical measure.

Generalizing this result for the gradient is particularly complicated as we are comparing

objects with different dimensions. At node vi , the gradient on the graph ∇G ,vi f is a vector of

dimension N and the gradient on the manifold evaluated in xi is a vector of dimension T .

Our solution to overcome this issue is to focus on the norm of the gradient that is sufficient to

prove convergence of the total variation norm (our final goal).

Theorem 22. Let the data points x1, . . . , xN be sampled from a uniform distribution on a

manifold M ⊂ RT . Using the weight function (6.14), define a sequence tN = ( 1
N

) 1
k+1+α , where

α> 0 and let f ∈ C 1(M ) with finite gradients; then the following holds:

lim
N→∞

1

t
k+1

2
N 2

k+1
2 π

k−1
2

1

N

∥∥∇G ,vi f
∥∥

1 =
1

vol(M )

∥∥∇M f (xi )
∥∥

2 (6.16)

where the limit is taken in probability.

The proof is deferred in Section 6.4. While the previous result characterizes only a single point,

we can integrate it over the manifold in order to get a global result proving the convergence of

the total variation norm.
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Theorem 23. Let the data points x1, . . . , xN be sampled from a uniform distribution on a

manifold M ⊂ RT . Using the weight function (6.14), define a sequence tN = ( 1
N

) 2
k+1+α , where

α> 0 and let f ∈ C 1(M ) with finite gradients; then the following holds:

lim
N→∞

1

t
k+1

2
N 2

k+1
2 π

k−1
2

1

N 2

∥∥ f
∥∥

T V −G = 1

vol(M )

∥∥ f
∥∥

T V −M , (6.17)

where the limit is taken in probability.

The proof is deferred in Section 6.5. Note that we have assumed that the function f to

be derivable with continuous finite gradient. In consequence our results do not apply to

discontinuous functions.

6.4 Proof of Theorem 22

Proof. The proof is done by the application of a succession of lemmas that are proved later in

this Section.

lim
N→∞

1

t
k+1

2
N 2

k+1
2 π

k−1
2

1

N

∥∥∇G ,vi f
∥∥

1

= lim
N→∞

1

t
k+1

2
N 2

k+1
2 π

k−1
2

1

N

N∑
n=1

e
−‖xi −xn‖2

2
2tN

∣∣ f (xn)− f (xi )
∣∣ (6.18)

= lim
t→0

1

t
k+1

2 2
k+1

2 π
k−1

2

∫
x∈M

e−
‖xi −x‖2

2
2t

∣∣ f (x)− f (xi )
∣∣dµ(x) (6.19)

= lim
t→0

1

t
k+1

2 2
k+1

2 π
k−1

2

∫
x∈Bxi

e−
‖xi −x‖2

2
2t

∣∣ f (x)− f (xi )
∣∣dµ(x) (6.20)

= 1

vol(M )
lim
t→0

1

t
k+1

2 2
k+1

2 π
k−1

2

∫
x∈B̃xi

e−
‖xi −x‖2

2
2t

∣∣ f̃ (x)− f̃ (0)
∣∣dx (6.21)

= 1

vol(M )
lim
t→0

1

t
k+1

2 2
k+1

2 π
k−1

2

∫
x∈Rk

e−
‖xi −x‖2

2
2t

∣∣ f̃ (x)− f̃ (0)
∣∣dx (6.22)

= 1

vol(M )
lim
t→0

1

t
k+1

2 2
k+1

2 π
k−1

2

∫
x∈Rk

e−
‖x‖2

2
2t

∣∣〈∇M f̃ (0), x〉∣∣dx (6.23)

= 1

vol(M )

∥∥∇Rk f̃ (0)
∥∥

2 (6.24)

= 1

vol(M )

∥∥∇M f (xi )
∥∥

2 . (6.25)

The first part of the proof (Hoeffding, reduction, exponential map) follows similar steps as the

Laplacian convergence used in [8].

• Line (6.18) follows from the definition.
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• Line (6.19) is obtained using Hoeffding inequality as detailed in Lemma 5.

• Line (6.20) consists in a reduction to a ball Bxi around xi that is done thanks to Lemma 6.

It allows us to use the exponential map.

• Line (6.21) is obtained using the exponential map transformation as detailed in Sec-

tion 6.4.3 and Lemma 7. We use exp(B̃xi ) = Bxi .

• Line (6.22) follows from Lemma 9. We are back in full Euclidean space.

• Line (6.23) is a first order approximation of (6.22) detailed in Lemma 10.

• Line (6.24) is obtained by computing the integral (Lemma 17).

• Line (6.25) follows from the fact that exponential map spans the tangent space of the

point xi .

6.4.1 From the graph to the manifold

Now we proceed with the different important lemmas used in the proof of Theorem 22. The

first step consists in increasing the number of points N towards infinity in order for the sum to

become an integral.

Lemma 5. Define tN = ( 1
N

) 1
k+1+α withα> 0. Given that the samples xi are uniformly distributed

on the manifold M we have:

lim
N→∞

1

t
k+1

2
N

1

N

∑
n

e
−‖xi −xn‖2

2
2tN

∣∣ f (xn)− f (xi )
∣∣ = lim

t→0

1

t
k+1

2

∫
M

e−
‖xi −x‖2

2
2t

∣∣ f (x)− f (xi )
∣∣dµ(x)

Proof. We start by computing the expected value of the sum:

E

[
1

N

N∑
n=1

e−
‖xi −xn‖2

2
2t

∣∣ f (xn)− f (xi )
∣∣]= 1

t
k+1

2

∫
M

e−
‖xi −x‖2

2
2t

∣∣ f (x)− f (xi )
∣∣dµ(x).

Then we apply the Hoeffding’s inequality to find:

P

[
1

t
k+1

2

∣∣∣∣∣ 1

N

N∑
n=1

e−
‖xi −xn‖2

2
2t

∣∣ f (xn)− f (xi )
∣∣−E[ 1

N

N∑
n=1

e−
‖xi −xn‖2

2
2t

∣∣ f (xn)− f (xi )
∣∣]∣∣∣∣∣> ε

]
≤ 2e−

1
2 ε

2t k+1N

Let us choose tN = ( 1
N

) 1
k+1+α with α> 0. We observe that the right term goes to 0 as N →∞

which implies

lim
N→∞

1

t
k+1

2
N

1

N

∑
n

e
−‖xi −xn‖2

2
2tN

∣∣ f (xn)− f (xi )
∣∣ = lim

t→0

1

t
k+1

2

∫
M

e−
‖xi −x‖2

2
2t

∣∣ f (x)− f (xi )
∣∣dµ(x).
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6.4.2 Reduction of the integral from the manifold to a ball

The weights are decreasing exponentially with the distance. As a result, the value of the integral

is governed by the local behavior of the function, i.e., in an open Ball around the point of

interest p . We express this through the following lemma that was expressed in a different form

in [8, Lemma 4.1].

Lemma 6. For any point p ∈ M and any open set Bp ⊂ M with x ∈ Bp we have the following:

lim
t→0

1

t
k+1

2

∫
x∈M

e−
‖p−x‖2

2
2t

∣∣ f (p)− f (x)
∣∣dµ(x) = lim

t→0

1

t
k+1

2

∫
Bp

e−
‖x−p‖2

2
2t

∣∣ f (p)− f (x)
∣∣dµ(x)

Proof. Let d = infx∈Bp

∥∥x −p
∥∥2

2 and let C = ∫
x∈(M −Bp ) dµ(x) be the volume of the complement

of Bp . Since the set Bp is open and p ∈ Bp , we have d > 0. We can bound the approximation

error by:

1

t
k+1

2

∣∣∣∣∫
x∈M

e−
‖p−x‖2

2
2t

∣∣ f (x)− f (p)
∣∣dµ(x)−

∫
x∈Bp

e−
‖p−x‖2

2
2t

∣∣ f (x)− f (p)
∣∣dµ(x)

∣∣∣∣
≤ 2

t
k+1

2

M sup
x∈M

(| f (x)|)e−
−d2

2t

Finally, when t → 0, we have:

lim
t→0

2

t
k+1

2

M sup
x∈M

(| f (x)|)e−
−d2

2t = 0.

6.4.3 The exponential map

Since the manifold M is assumed to be smooth, we know that in every point, there is a local

system of coordinates that is locally Euclidean. It is called the exponential map. Using this

system of coordinates would allow us to work in Rk , where k is the dimension of the manifold

M .

The exponential map at a point p is a map from the tangent space TM (p) ∈Rk to the manifold

such that

• expp (0) = p ,

• expp is a local isomorphism, and

• an image of a straight line through the origin is a geodesic in M .

As a consequence, we can express a function f : M →R, in geodesic coordinates around p :

f̃ (x) = f (expp (x))
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Since we have a smooth manifold, the exponential map is locally invertible and we can choose

a ball B̃p ∈ Rk of radius ε> 0 (where ε has to be chosen appropriately) such that in this ball,

the exponential map is a diffeomorphism. Let us define Bp to be:

Bp = expp B̃p ⊂ M (6.26)

Using this change of variable, we can construct the following Lemma.

Lemma 7. Let the points p , y belong to a k-dimensional smooth compact manifold M , and,

define the exponential map y = expp (x). Given that f̃ (x) = f (expp (x)) and Bp = expp (B̃p ),

then we have

lim
t→0

1

t
k+1

2

∫
y∈Bp

e−
‖p−y‖2

2
2t

∣∣( f (y)− f (p)
)∣∣dµ(y) = 1

vol(M )
lim
t→0

1

t
k+1

2

∫
x∈B̃p

e−
‖p−x‖2

2
2t

∣∣( f̃ (x)− f̃ (0)
)∣∣dµ(x)

The proof of Lemma 7 uses ingredients from [8]. The first one is the following lemma that

bounds the difference between the geodesic and the Euclidean distance.

Lemma 8. [8, Lemma 4.3] For any two points p , y ∈ M , y = expp (x), the relation between the

Euclidean and the geodesic distance

gp (x) = ‖x‖2
Rk −

∥∥y −p
∥∥2
RT (6.27)

is O
(
‖x‖4

Rk

)
. In other words, there exists a finite constant C such that

0 ≤ ‖x‖2
Rk −

∥∥y −p
∥∥2
RT = gp (x) ≤C ‖x‖4

Rk

for all p ∈ M . The constant C depends upon the embedding of the manifold and bounds on the

third derivatives of the embedding coordinates.

Proof of Lemma 7. Let us denote D( f , p) the left-hand side of the equality and perform the

exponential map change of coordinates around p :

D( f , p) = 1

t
k+1

2

∫
y∈Bp

e−
‖p−y‖2

2
2t

∣∣ f (y)− f (p)
∣∣dµ(y)

= 1

vol(M )

1

t
k+1

2

∫
x∈B̃p

e−
‖p−expp (x)‖2

2
2t

∣∣ f̃ (x)− f̃ (0)
∣∣√det(G(x))dx

where G(x) is the metric tensor in exponential coordinates. Now it has been shown in [123, 124]

that

det(G(x)) = 1− 1

6
x∗R x +O

(‖x‖3)
where R is the Ricci curvature tensor. On a smooth compact manifold M , the elements of the
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Chapter 6. Manifold regularization via graph total variation

tensor R are bounded and therefore we have:
p

det(G(x)) = 1+O(‖x‖2)

Now note that the function eα = 1+O (αeα) for α> 0. Thus we have

e−
‖p−expp (x)‖2

2t = e−
‖x‖2−gp (x)

2t = e−
‖x‖2

2t e
gp (x)

2t = e−
‖x‖2

2t

(
1+O

(
1

2t
gp (x)e

gp (x)

2t

))
where gp (x) is O

(‖x‖4
)

from Lemma 8. Finally, our expression becomes

D( f , p) = 1

vol(M )
lim
t→0

1

t
k+1

2

∫
B̃p

e−
‖x‖2

2t

(
1+O

(
1

2t
gp (x)e

gp (x)

2t

))∣∣ f̃ (x)− f̃ (0)
∣∣(1+O

(‖x‖2)
))

dx

= A( f , p)+B( f , p)+C ( f , p)

= A( f , p)

where

A( f , p) = 1

vol(M )
lim
t→0

1

vol(M )

1

t
k+1

2

∫
B̃p

e−
‖x‖2

2t
∣∣ f̃ (x)− f̃ (0)

∣∣dx

B( f , p) = 1

vol(M )
lim
t→0

1

t
k+1

2

∫
B̃p

e−
‖x‖2

2t
∣∣ f̃ (x)− f̃ (0)

∣∣O
(‖x‖2)dx

C ( f , p) = 1

vol(M )
lim
t→0

1

t
k+1

2

∫
B̃p

e−
‖x‖2

2t O
(

1

2t
gp (x)e

gp (x)

2t

)∣∣ f̃ (x)− f̃ (0)
∣∣(1+O

(‖x‖2))dx .

To conclude the proof, we simply need to show that both B( f , p) and C ( f , p) are equal to 0.

Let us start with B( f , p).

For every x , the function to be integrated is positive and we know that there are constants

K1,K2 and K3 such that

B( f , p) ≤ lim
t→0

1

t
k+1

2

∫
˜x∈Bp

e−
‖x‖2

2t
∣∣ f̃ (x)− f̃ (0)

∣∣K1 ‖x‖2 dx

≤ lim
t→0

1

t
k+1

2

∫
B̃

e−
‖x‖2

2t K2 ‖x‖2 dx

≤ lim
t→0

1

t
k+1

2

∫
x∈Rk

e−
‖x‖2

2t K2 ‖x‖2 dx

= lim
t→0

K2
1

t
k+1

2

k

2
(2t )

k+2
2 π

k
2 = lim

t→0
K3t

1
2 = 0.

The key ingredient for the bound is the fact that
∫

x∈Rk e
−‖x‖2

t ‖x‖2
2dx = k

2 t
k+2

2 π
k
2 , which is proved

in Lemma 15.

For the term C ( f , p), we use similar argument. Thanks to Lemma 8, we know that there exist
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6.4. Proof of Theorem 22

some constants K1,K2 such that

C ( f , p) = 1

vol(M )
lim
t→0

1

t
k+1

2

∫
x∈B̃p

e−
‖x‖2

2t O
(

1

2t
gp (x)e

gp (x)

2t

)∣∣ f̃ (x)− f̃ (0)
∣∣(1+O

(‖x‖2))dx

≤ lim
t→0

1

t
k+3

2

∫
x∈B̃p

e−
‖x‖2

4t ‖x‖4 K1dx

≤ lim
t→0

1

t
k+3

2

∫
x∈Rk

e−
‖x‖2

4t ‖x‖4 K1dx

≤ K2 lim
t→0

t
1
2 ,

where we use the fact that
∫

x∈Rk e
−‖x‖2

t ‖x‖4
2 dx = k2+2k

4 t
k+4

2 π
k
2 (Lemma 16).

6.4.4 Analysis in Rk

In this section, we prove the two final lemmas which are basically the explicit computation of

the integral in the Euclidean space.

Lemma 9. For any open set B̃ ⊂Rk such that 0 ∈ B̃ , we have the following.

lim
t→0

1

t
k+1

2

∫
x∈B̃

e−
‖x‖2

2t
∣∣ f̃ (x)− f̃ (0)

∣∣dx = lim
t→0

1

t
k+1

2

∫
x∈Rk

e−
‖x‖2

2t
∣∣ f̃ (x)− f̃ (0)

∣∣dx

Proof. Let us bound the error and show that it converges towards 0 with t → 0. We define

e(t ) = 1

t
k+1

2

∫
x∈B̃

e−
‖x‖2

2t
∣∣ f̃ (x)− f̃ (0)

∣∣dx − 1

t
k+1

2

∫
x∈Rk

e−
‖x‖2

2t
∣∣ f̃ (x)− f̃ (0)

∣∣dx

Since B̃ is open and contains 0, we can find a ball centered in 0 of radius r > 0 such that
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Chapter 6. Manifold regularization via graph total variation

B0,r ∈ B̃ .

|e(t )| = 1

t
k+1

2

∣∣∣∣∫
x∈B̃

e−
‖x‖2

2t
∣∣ f̃ (x)− f̃ (0)

∣∣dx −
∫
Rk

e−
‖x‖2

2t
∣∣ f̃ (x)− f̃ (0)

∣∣dx

∣∣∣∣
= 1

t
k+1

2

∣∣∣∣∫
x∈Rk \B̃

e−
‖x‖2

2t
∣∣ f̃ (x)− f̃ (0)

∣∣dx

∣∣∣∣
≤ 1

t
k+1

2

∣∣∣∣∫
Rk \B0,r

e−
‖x‖2

2t C dx

∣∣∣∣
= 2kC

t
k+1

2

∣∣∣∣∫ ∞

x=r
e−

x2

2t dx

∣∣∣∣k

= 2k+ 1
2 C

t
1
2

∣∣∣∣∣
∫ ∞

x= rp
2t

e−x2
dx

∣∣∣∣∣
k

= 2k+ 1
2 C

t
1
2

(p
π

2
erfc

(
rp
2t

))k

,

where C = 2maxx f̃ (x). Furthermore

lim
t→0

C2

t
1
2

(
erfc

(
rp
2t

))k

= 0,

which implies that the error is 0 and that the equality holds. This final equality is found using

a change of variable and L’Hospital’s rule

lim
t→0

1

t
erfc

(
rp
2t

)
= lim

t→∞

erfc
(

r
p

tp
2

)
1
t

= lim
t→∞

2p
π

e−
r 2 t

2

1
t 2

= 0.

Lemma 10. Given a bounded function f ∈ C 1(Rk ) with bounded derivatives, we have the

following equality

lim
t→0

1

t
k+1

2

∫
x∈Rk

e−
‖x‖2

2
t

∣∣ f (x)− f (0)
∣∣dx = lim

t→0

1

t
k+1

2

∫
x∈Rk

e−
‖x‖2

2
t

∣∣〈∇M f (0), x〉∣∣dx

Proof. The proof consists in a) showing the following equality

lim
t→0

1

t
k+1

2

∫
x∈Rk

e−
‖x‖2

2
t

∣∣∣ ∣∣ f (x)− f (0)
∣∣− ∣∣〈∇Rk f (0), x〉∣∣ ∣∣∣dx = 0

and b) using Lemma 14 to obtain the desired result.

Let us consider the following expansion of the function f :

f (x) = f (0)+〈∇R f (0), x〉+O
(‖x‖2)
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6.5. Proof of Theorem 23

The gradient approximates the function up to the first order. As a consequence, the error

varies with the second order. Moreover since f is C 1(Rk ) with bounded derivatives, there exists

a constant C such that∣∣∣ ∣∣ f (x)− f (0)
∣∣− ∣∣〈∇Rk f (0), x〉∣∣ ∣∣∣≤ ∣∣( f (x)− f (0)

)−〈∇Rk f (0), x〉∣∣≤C ‖x‖2
2 , ∀x ∈Rk .

The first inequality follows from the triangular inequality, i.e., we have
∣∣|a|− |b|∣∣≤ ∣∣a −b

∣∣.
We can now compute an upper bound on E(t ):

lim
t→0

1

t
k+1

2

∫
x∈Rk

e−
‖x‖2

2
t

∣∣∣ ∣∣ f (x)− f (0)
∣∣− ∣∣〈∇Rk f (0), x〉∣∣ ∣∣∣dx

≤ lim
t→0

1

t
k+1

2

∫
x∈Rk

e−
‖x‖2

2
t C ‖x‖2

2 dx

= lim
t→0

C
1

t
k+1

2

k

2
t

k+2
2 π

k
2 = lim

t→0
C

k

2
t

1
2π

k
2 = 0

The application of Lemma 14 concludes the proof.

6.5 Proof of Theorem 23

Proof. The proof uses the ingredient of Theorem 22. We have

lim
N→∞

1

t
k+1

2
N 2

k+1
2 π

k−1
2

1

N 2

∥∥ f
∥∥

T V −G

= lim
N→∞

1

t
k+1

2
N 2

k+1
2 π

k−1
2

1

N 2

N∑
n=1

N∑
i=1

e
−‖xi −xn‖2

2
2tN

∣∣( f (xn)− f (xi )
)∣∣ (6.28)

= lim
t→0

1

t
k+1

2
N 2

k+1
2 π

k−1
2

∫
xi∈M

∫
xn∈M

e−
‖xi −x‖2

2
2t

∣∣( f (xi )− f (xn)
)∣∣dµ(xn)dµ(xi ) (6.29)

= lim
t→0

∫
xi∈M

∥∥∇M f (xi )
∥∥

2 dµ(xi ) (6.30)

= 1

vol(M )

∥∥ f
∥∥

T V −M , (6.31)

where

• (6.28) and (6.31) are obtained by definition,

• (6.29) follows from Lemma 11,

• and (6.30) using the equality between (6.19) and (6.25) proved in Theorem 22.
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Chapter 6. Manifold regularization via graph total variation

Lemma 11. Define tN = ( 1
N

) 2
k+1+α with α > 0. Given that the samples xi , xn are uniformly

distributed on the manifold M we have:

lim
N→∞

1

t
k+1

2
N

1

N 2

N∑
n=1

N∑
i=1

e
−‖xi −xn‖2

2
2tN

∣∣( f (xn)− f (xi )
)∣∣

= lim
t→0

1

t
k+1

2

∫
x1∈M

∫
x2∈M

e−
‖xi −x‖2

2
2t

∣∣( f (x1)− f (x2)
)∣∣dµ(x1)dµ(x2)

We start by computing the expected value of the sum:

E

[
1

N 2

N∑
n=1

N∑
i=1

e−
‖xi −xn‖2

2
2t

∣∣ f (xn)− f (xi )
∣∣]= 1

t
k+1

2

∫
x1∈M

∫
x2∈M

e−
‖x1−x2‖2

2
2t

∣∣( f (x)− f (xi )
)∣∣dµ(x1)dµ(x2).

Then we apply the Hoeffding’s inequality to find:

P

[
1

t
k+1

2

∣∣∣∣∣ 1

N 2

N∑
n=1

N∑
i=1

e−
‖xn−xi ‖2

2
2t

∣∣ f (xn )− f (xi )
∣∣−E[ 1

N 2

N∑
n=1

N∑
i=1

e−
‖xi −xn‖2

2
2t

∣∣ f (xn )− f (xi )
∣∣]∣∣∣∣∣> ε

]
≤ 2e−

1
2 ε

2t k+1N 2

Let us choose tN = ( 1
N

) 2
k+1+α with α > 0. We observe that the right term goes to 0 as N →∞

which implies the desired result.

130



7 Discussion

7.1 Future directions

This dissertation does not escape the universal rule stating that a thesis is never finished. If the

days were lasting longer, we would extend this work in the following directions.

Sampling graph signals: Developing sampling techniques for graph signals is one consistent

direction to extend the results of this thesis. On the one hand, the probabilistic framework

of stationarity developed in Chapter 5 is particularly suitable to define optimal sampling

algorithms as 1) it fully characterizes the intrinsic signal correlations and 2) it proposes an

optimal estimator for general learning problems. On the other hand, the random sampling

scheme presented in Example 20, where samples are drawn randomly with probability pro-

portional the norm of localized kernels, shows promiseful results. Assembling these two

facts, the logical direction is to show that given a stationary signal with PSD g 2, the optimal

random sampling weights are pi = ‖T G
i g ‖2

2

‖λ‖2
2

. Some preliminary results are already available

in [79, Theorem 1] where this sampling scheme is proved to embed the data given a sufficient

number of measurements. To obtain a fully coherent sampling theory, we still need to bound

the reconstruction error of an estimator such as (5.16).

Given a stationary signal, active sampling methods can also benefit directly from the localiza-

tion operator as it provides a direct access to the correlation between the vertices. One way to

do it is to generalize the results of [137] to the graph settings. It would result in an accurate

but inefficient methods. Schemes to improve the efficiency of this approach are given in [79],

making active sampling on graphs an exciting topic too.

Graph out of sample extension: In order to transfer GSP techniques in a semi-supervised

learning setting, it is important to focus on the case, where the graph is constructed from a

point cloud and where we are searching for a global solution. In Chapter 6 for example, we

have used the total variation norm on graphs to regularize our problem. Similarly, we could use

the concept of stationarity for manifold regularization. Nevertheless, it is cumbersome to rely
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Chapter 7. Discussion

on a predefined RKHS to compute the solution at any points and it would be very convenient

to directly extend the solution to the new samples without using any predefined RKHS kernel.

One solution is to perform as follows. First, instead of the continuous RKHS kernel used

classically, we use a discrete RKHS graph kernel adapted to the graph signal (similarly to [103]).

Second, we compute the solution on the graph. Finally, we extend the RKHS graph kernel

outside of the graph to recover the global solution. Utilizing the results [8, 9, 132], we have

already1 constructed a method that extends a graph kernel to new samples using a spectral

approach. The results are similar to those of the Nyström interpolation method [10]. At this

point, the major task resides mainly in proving convergence results similarly to [121, 119, 120],

i.e., given a number of labeled and unlabeled samples, we want to bound the estimation error

of an estimator.

Using graph stationarity in anomaly detection: In anomaly detection, one tries to detect if

a sample statistically differs from a testing group. In general, the number of wrong samples

is insufficient to model the abnormal class. As a result, many techniques try to estimate the

distribution of valid samples and test if a new sample statistically belongs to it. Motivated

by the results of Chapter 5 and Section 5.7, we can build a covariance estimator and thus

parametrize a Gaussian distribution with a small number of samples. First, using the valid

samples, a nearest neighbors graph is constructed by connecting similar features. Then, the

graph PSD is estimated using the same dataset. Eventually, using the PSD and the graph, a

method has to be constructed to check if a new sample belongs the distribution. The proposed

method remains over-constraint for many problems as most of the data will only be close to

stationary on a nearest neighbor graph. However, if the number of features is much larger

than the size of the training set, this technique may be substantially more accurate than other

ones.

7.2 Considerations on Graph Signal Processing

After a few years of existence, hundreds of contributions, its own yearly workshop, many

conferences special sessions and an almost dedicated journal, GSP is not really emerging

anymore and it occupies some space in the Data Science community. Nevertheless, there is

still no application where GSP provides the most elegant and prevalent solution yet. To get

closer, our feeling is that we should 1) work on Machine Learning applications that are not

directly related to graphs, and 2) find new solutions to learn graphs as suggested in [54].

The reproducible research : During the 4 years of our thesis, we have seriously tried to

promote reproducible research. Beside distributing the code to reproduce the results of our

publications, we have created, maintained and promoted two open-source software projects:

the UNLocBoX [87] and GSPBOX [86]. While this effort has somehow paid off, we have not

met our goal, i.e., to make most of the GSP research reproducible. Today we believe that a

1Unfortunately, there is no publication available yet.
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different approach is needed to fulfill this objective. In order to encourage the community to

publish its code and reward the scientists doing it, we should create a standard database of

GSP problems with some baseline results.

We thank the reader for staying this far with us.
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A A gentle introduction to graph signal
processing

A.1 Computation of the divergence operator

Proof. Let us develop our hypothesis 〈∇G x , y〉R|E | = 〈x ,divG y〉R|V | :

〈∇G x , y〉R|E | = 〈x ,divG y〉R|V |

⇒ 1
2

∑
n

∑
i
√

W [i , j ] (x[n]−x[i ]) y[i ,n] =∑
n

x[n]divG y[n]

⇔ 1
2

(∑
n
∑

i
p

W [i ,n]x[n]y[i ,n]−∑
n
∑

i
p

W [i ,n]x[i ]y[i ,n])
) =∑

n
x[n]divG y[n]

⇔ 1
2

(∑
n x[n]

∑
i
p

W [i ,n]y[i ,n]−∑
n
∑

i x[n]
p

W [n, i ]y[n, i ]
) =∑

n
x[n]divG y[n]

⇔ 1
2

∑
n x[i ]

(∑
i
p

W [i ,n]y[i ,n]−p
W [n, i ]y[n, i ]

) =∑
n

x[n]divG y[n]

where the factor 1
2 follows from the fact that we count each edges twice. As a result, one valid

way to define the divergence operator is

divG y[n] = 1

2

∑
i

√
W [i ,n]y[i ,n]−

√
W [n, i ]y[n, i ]
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Appendix A. A gentle introduction to graph signal processing

A.2 Laplacian

Proof. We assume the graph to be undirected, i.e., W [i ,n] =W [n, i ].

(Lx) [n] = (
divG∇G x

)
[n]

= 1

2

(∑
i

√
W [i ,n]

(
(∇G x)[i ,n]− (∇G x)[n, i ]

))
= ∑

i
W [i ,n] (x[n]−x[i ])

= (D −W ) x[n].
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B Structural clustering via the graph
localization operator

B.1 Translation for graphs

Intuitively, translating a signal is equivalent to moving it in one direction. Let x ∈ RN be a

vector containing one period of a discrete N -periodical signal. Translating x by i is simply

given by:

Ti x[n] = x [bn − icN ] , (B.1)

where bncN = n−N floor
(n−1

N

)
is an operation that maps any index n to the range 1. . . N . This

operation does not affect the shape of the signal x and can be seen as a multiplication by an

eigenvector in the spectral domain

T̂i x[`] = e2π j i`
N x̂[`]. (B.2)

B.1.1 Generalizations of translation for graphs

Based on (B.1) and (B.2), multiple generalizations of translations have been proposed. Unfor-

tunately, none of them satisfies the two most essential properties that one would naturally

expect from a translation: 1) Isometric (the translation conserves the energy of the signal), and

2) Localization (localized signals remain concentrated after translation).

Previous works use two different paths to generalize translation for graphs. In the first, one

tries to generalize a unit of translation i.e., T1. This approach allows for the composition

Ti Tn x = Ti+n x , but hinders localization properties (here i ,n are not node indices but amounts

of translation). In the second way, one tries to generalize the translation as the shift to a

specified node, which does not allow for composition because of the irregular structure of

graphs. However, in that case, the resulting signal can (under some hypotheses) be localized.

137



Appendix B. Structural clustering via the graph localization operator

The graph shift operator

Based on the so-called Algebraic Signal Processing framework [95], the authors of [108] pro-

posed to use the weight (adjacency) matrix as a translation operator, i.e., a unit of translation

is defined as:

T1x =W x (B.3)

In case the graph is a directed “ring” with weight matrix

W [i ,n] =
1 if bi −ncN = 1

0 otherwise,

the graph shift operator becomes equivalent to the traditional translation.

A careful analysis shows that the shift operator diffuses, for most of the graphs, the energy

along the edges. In fact, for a symmetric graph, it is related to the graph Laplacian as W = D−L.

For a d-regular graph,1 the shift operator is a low pass graph filter with function hl (x) = d −x.

In general the graph shift is not isometric and (as a diffusion operator) does not preserve

localization.

An isometric graph translation operator

Another generalization of the translation operator is proposed in [44, 47]. It has the particular-

ity to conserve energy.

Definition 26. For a graph signal x , a unit of translation is defined as:

TB s := exp

(
j 2π

√
L

ρG

)
x = b(L)x , (B.4)

where b(x) = exp
(

j 2π
√

x
ρG

)
. The constant ρG is an upper bound on the maximum eigenvalue

of the graph Laplacian λmax defined as

ρG := max
i∈V

√
2d [i ](d [i ]+ d̄ [i ]),

where d̄ [i ] =
∑N

n=1 W [i ,n]d [n]
d [i ] .

While this operator conserves the energy of the signal (‖TB x‖2 = ‖x‖2), it does not have

localization properties.

1A graph with constant degree d
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The generalized graph translation operator

From a different perspective, leveraging the well-defined graph Fourier transform, Shuman et

al. define the generalized translation for graph signals as the convolution with a Kronecker

delta [117, Equation 26]. The graph convolution ∗ being an element-wise multiplication in

the spectral domain, they obtain the following.

Definition 27. For a graph signal x and a vertex i , the generalized graph translation operator

reads:

Ti x[n] := (x ∗δi )[n] =
N−1∑
`=0

x̂[`]u∗
` [i ]u`[n]. (B.5)

Unfortunately, the generalized translation operator does not perform what we would intu-

itively expect from it, i.e., it does not translate a signal x from node n to node i . Instead when

x̂ changes smoothly across the frequencies (Theorem 3), then Ti x is localized around node i ,

while x is in general not localized at a particular node or set of nodes.

Problem with translation

While all three definitions generalize classical translation, none of them is making what one

would naturally expect from translation, i.e., move a signal localized around a node i toward

another node n. We believe that translation is not necessary to build GSP and we suggest

dropping it in favor of the localization operator which is inspired by the generalized graph

translation operator.

B.2 An alternative generalized translation operator

Interestingly, one could define a generalized translation operator as inversing a localization

operation and re-localizing the mass around another node. One way to do this is to define:

Ti→n x[m] := TnT −1
i x[m] =

N−1∑
`=0

x̂[`]
(
u∗
` [i ]

)−1 u∗
` [n]u`[m]. (B.6)

This operator moves some mass from vertex i to vertex n and satisfies

Ti→nT G
i g = T G

n g . (B.7)

This equation leads to

T −1
i T G

i g = T −1
n T G

n g =
N−1∑
`=0

g (λ`)u`, ∀vi ∈ V (B.8)
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Unfortunately, this operator is not well defined as u`[i ] can be equal to 0. Furthermore, in

practice one does not need this operator the localization operator is sufficient.

B.3 Proof of Theorem 1

Proof. Since |g (λ`)| <∞, there exist a polynomial p of order N such that g (λ`) = p(λ`). By

definition,

T G
i g [n] = T G

i p [n] = p(L)[i ,n]

We now show that p(L) is independent of the eigenvector bases. Any valid basis U satisfies

L =UΛU∗. We derive

p(L) =U p(Λ)U∗ =U

(
N∑

m=0
αmΛ

m

)
U∗ =

N∑
m=0

αmUΛmU∗ =
N∑

m=0
αmLm . (B.9)

Independently from the choice of U , we find that g (L) =∑N
m=0αmLm , which concludes the

proof.

B.4 Proof of Theorem 2

Proof.

1. Using the definition and (2.18), we find:

T G
i g [n] = 1

N

N∑
k=1

g (λk )e− j 2π ki
N e j 2π kn

N = 1

N

N∑
k=1

g (λk )e− j 2π kN
N e j 2π k(n−i )

N = T G
N g [n − i ].

2. From Theorem 1, we know that the localization operator is independent of the eigenvec-

tor basis. Let us choose a real basis. We know that such a basis exists since the Laplacian

L is a real symmetric matrix. From Definition 15, if the graph Fourier basis U is real,

then T G
g i will also be real for g :R+ →R. Instead of this argument, one can also use the

next part of the proof (B.10) to show that the localization operator provides a real result.

3. From the first part, we know that T G
i g [n] = T G

N g [n − i ]. As a result, we need to show

that T G
N g is symmetric around the node N or 0. The trick is to group the factors corre-

sponding to the same eigenvalue together, i.e., from (2.19) λk = λN−k . If N is odd, we
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obtain:

T G
N g [n] =

N−1∑
`=0

g (λ`)u`[n]

= 1p
N

(
g (0)+

(N−1)/2∑
`=1

g (λ`)exp

(
2π j

`n

N

)
+

(N−1)/2∑
`=1

g (λ`)exp

(
2π j

(N −`)n

N

))

= 1p
N

(
g (0)+

(N−1)/2∑
`=1

g (λ`)

(
exp

(
2π j

`n

N

)
+exp

(
2π j

(N −`)n

N

)))

= 1p
N

(
g (0)+

(N−1)/2∑
`=1

g (λ`)

(
exp

(
2π j

`n

N

)
+exp

(
−2π j

`n

N

)))

= 1p
N

(
g (0)+2

(N−1)/2∑
`=1

g (λ`)cos

(
2π j

`n

N

))
(B.10)

Since all cosines are symmetric, the result will also be symmetric. When N is even, the

same principle can be used with an extra term (−1)n g (1).

4. From (B.10), we observe that T G
N g = g (λ)B where B is a matrix containing cosines with

all possible frequencies. These cosines span the space of the symmetric functions. As a

result, if x is symmetric, we can find the coefficients g (λ) such that g (λ)B = x = T G
N g .

B.5 Proof of Theorem 5

Proof. Let us first prove that the estimator is unbiased. We have

E
[

ṠG
2

[i ,k]
]
= 1

M

M∑
m=1

E
[
(xk,m[i ])2]= 1

M

M∑
m=1

E
[∣∣〈wm ,T G

i g 〉∣∣2
]
= 1

M

M∑
m=1

∥∥T G
i gk

∥∥2
2 =

∥∥T G
i gk

∥∥2
2 ,

where the third equality follows from Lemma 3. For the variance, let us first focus on the case

where M = 1.

Var
[

˙S2
G [i ,k]

]
= E

[(
ṠG [i ,k]

)2
]
− (
E
[
ṠG [i ,k]

])2

= E
[∣∣〈wm ,T G

i g 〉∣∣4
]
−∥∥T G

i gk
∥∥4

2

= ∥∥T G
i gk

∥∥4
4 (m4 −3)+2

∥∥T G
i g

∥∥4
2

When M samples are chosen, then the variance is reduced by a factor of M .

The computation of E
[∣∣〈wm ,T G

i g 〉∣∣4
]

is detailed below. It depends both on the second mo-
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ment and on the first moment of the distribution.

E

[∣∣∣∣∑
n

wnTi g [n]

∣∣∣∣4]
= E

[
N∑

n=1

N∑
m=1

N∑
o=1

N∑
p=1

w [n]w [m]w [o]w [p]T G
i g [n]T G

i g [m]T G
i g [o]T G

i g [p]

]

=
N∑

n=1

(
T G

i g [n]
)4
E
[

w 4[n]
]+3

N∑
n=1

N∑
m 6=n

(
T G

i g [n]
)2 (

T G
i g [m]

)2
E
[

w 2[n]
]
E
[

w 2[m]
]

= m4
∥∥T G

i g [n]
∥∥4

4 +3
N∑

n=1

N∑
m 6=n

(
T G

i g [n]
)2 (

T G
i g [m]

)2

= m4
∥∥T G

i g [n]
∥∥4

4 +3
N∑

n=1

N∑
m=1

(
T G

i g [n]
)2 (

T G
i g [m]

)2 −3
N∑

n=1

(
T G

i g [n]
)4

= (m4 −3)
∥∥T G

i g [n]
∥∥4

4 +3
∥∥T G

i g
∥∥4

2

The second line is obtained from the fact that E
[

w [n]w [m]w [o]w [p]
] 6= 0 only if (n,m) = (o, p)

, (n,m) = (p,o) or (n, p) = (m,o).
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C Global and local uncertainty princi-
ples for graph signals

C.1 Hausdorff-Young inequalities for graph signals

To prove the Hausdorff-Young inequalities for graph signals, we start by restating the Riesz-

Thorin interpolation theorem, which can be found in [98, Section IX.4]. This theorem is

valid for any measure spaces with σ-finite measures, and hence in the discrete finite di-

mensional case.

Theorem 24 (Riesz-Thorin). Assume S is a bounded linear operator from `p1 to `p2 and from

`q1 to `q2 ; i.e., there exist constants Bp and Bq such that

‖Sx‖p2 ≤ Bp ‖x‖p1 and ‖Sx‖q2 ≤ Bq ‖x‖q1 .

Then for any t between 0 and 1, S is also a bounded operator from `r1 to `r2 :

‖Sx‖r2 ≤ Br ‖x‖r1 ,

with

1

r1
= t

p1
+ 1− t

q1
,

1

r2
= t

p2
+ 1− t

q2
,

and

Br = B t
p B 1−t

q .

We shall also need the following reverse form of the result:

Corollary 4. Assume S is a bounded invertible linear operator from `p1 to `p2 and from `q1 to

`q2 , with bounded left-inverse from `p2 to `p1 and from `q2 to `q1 ; i.e., there exist constants Bp

and Bq such that∥∥S−1 y
∥∥

p1
≤ Bp

∥∥y
∥∥

p2
and

∥∥S−1 y
∥∥

q1
≤ Bq

∥∥y
∥∥

q2
, (C.1)
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or, equivalently, there exist constants Ap and Aq such that

‖Sx‖p2 ≥ Ap ‖x‖p1 and ‖Sx‖q2 ≥ Aq ‖x‖q1 . (C.2)

Then for any t between 0 and 1,

‖Sx‖r2 ≥ Ar ‖x‖r1 , (C.3)

with

1

r1
= t

p1
+ 1− t

q1
,

1

r2
= t

p2
+ 1− t

q2
,

and

Ar = At
p A1−t

q .

Proof. If S is invertible and has a left-inverse S−1 that satisfies S−1Sx = x for all x , then the

equivalence of (C.1) and (C.2) follows from taking y = Sx , x = S−1 y , Ap = B−1
p , and Aq = B−1

q .

The proof of (C.3) follows from the application of Theorem 24, with S replaced by S−1 and x

by Sx .

Proof of Theorem 7 (Hausdorff-Young inequalities for graph signals). First, we have the Parse-

val equality ‖x‖2
2 = ‖x̂‖2

2. Second, we have

‖x̂‖∞ = max
`

∣∣∣∣∣ N∑
n=1

u∗
` [n]x[n]

∣∣∣∣∣≤ max
`

N∑
n=1

∣∣u∗
` [n]x[n]

∣∣≤µG

N∑
n=1

| f (n)| =µG ‖x‖1 .

Applying the Riesz-Thorin theorem with p1 = 2, p2 = 2, Bp = 1, q1 = 1, q2 =∞, Bq =µG , t = 2
q ,

r1 = p, and r2 = q leads to the first inequality (4.9). The proof of the converse is similar, as we

have

‖x‖∞ = max
i

∣∣∣∣∣N−1∑
`=0

u`[i ]x̂[`]

∣∣∣∣∣≤ max
i

N−1∑
`=0

|u`[i ]x̂[`]| ≤µG

N−1∑
`=0

|x̂[`]| =µG ‖x̂‖1 .

The graph Fourier transform is invertible, so (4.10) then follows from Corollary 4, with p1 =∞,

p2 = 1, Ap =µ−1
G , q1 = 2, q2 = 2, Aq = 1, t = 2

q −1, r1 = p, and r2 = q .
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C.2 Variations of Lieb’s uncertainty principle

C.2.1 Generalization of Lieb’s uncertainty principle to frames

Proof of Theorem 9. Let D = {gi ,k } be a frame of atoms in CN , with lower and upper frame

bounds A and B , respectively. We show the following two inequalities, which together yield

(4.18). First, for any signal x ∈CN and any p ≥ 2,

sp (AD x) = ‖AD x‖p

‖AD x‖2
≤ B

1
p

A
1
2

(
max

i ,k

∥∥gi ,k
∥∥

2

)1− 2
p

(C.4)

Second, for any signal x ∈CN and any 1 ≤ p ≤ 2,

1

sp (AD x)
= ‖AD x‖p

‖AD x‖2
≥ A

1
p

B
1
2

(
max

i ,k

∥∥gi ,k
∥∥

2

)1− 2
p

(C.5)

For any x , the frame D satisfies

p
A‖x‖2 ≤ ‖AD x‖2 ≤

p
B ‖x‖2 . (C.6)

The computation of the sup-norm gives

‖AD x‖∞ = max
i ,k

∣∣〈x , gi ,k〉
∣∣≤ ‖x‖2 max

i ,k

∥∥gi ,k
∥∥

2 . (C.7)

From (C.6), AD is a linear bounded operator form `2 to `2 by
p

B . Similarly, from (C.7), this

operator is also bounded from `2 to `∞ by maxi ,k
∥∥gi ,k

∥∥
2. Interpolating between `2 and `∞

with the Riesz-Thorin theorem leads to

‖AD x‖p ≤ B
1
p

(
max

i ,k

∥∥gi ,k
∥∥

2

)1− 2
p ‖x‖2 . (C.8)

We combine (C.6) and (C.8) to obtain (C.4). The second inequality (C.5) is obtained using the

following instance of Hölder’s inequality:

‖AD x‖2
2 ≤ ‖AD x‖∞ ‖AD x‖1 ,

which implies that

‖AD x‖1 ≥
‖AD x‖2

2

‖AD x‖∞
≥ A‖x‖2

maxi ,k
∥∥gi ,k

∥∥
2

. (C.9)

We then use Corollary 4, the converse of Riesz-Thorin, to interpolate between (C.9) and (C.6),

and we find for p ∈ [1,2]:

‖AD x‖p ≥ A
1
p

(
max

i ,k

∥∥gi ,k
∥∥

2

)1− 2
p ‖x‖2 . (C.10)
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Combining (C.10) with the second inequality in (C.6) yields (C.5).

C.2.2 Discrete version of Lieb’s uncertainty principle

Proof of Theorem 8. Theorem 8 is actually a particular case of Theorem 9. To see why, we need

to understand the transformation between the graph framework used in this contribution and

the classical discrete periodic case. The DFT basis vectors
{

uk (n) = 1p
N

exp
(

j 2πkn
N

)}
k=0,1,...,N−1

can also be chosen as the eigenvectors of the graph Laplacian for a ring graph with N vertices

[125]. The frequencies of the DFT, which correspond up to a sign to the inverse of the period

of the eigenvectors, are not the same as the graph Laplacian eigenvalues on the ring graph,

which are all positive. We can, however, form a bijection between the set of graph Laplacian

eigenvalues and the set of N frequencies of the DFT, by associating one member from each set

sharing the same eigenvector. At this point, instead of considering graph filters as continuous

functions evaluated on the Laplacian eigenvalues, we can define a graph filter as a mapping

from each individual eigenvalue to a complex number. Note that an eigenvalue with multi-

plicity 2 can have two different outputs (e.g., λ3 = λ4 = 1, but the filter has different values

at λ3 and λ4). With this bijection and view of the graph spectral domain, we can recover the

classical discrete periodic setting by forming a ring graph with N vertices. In order to match

the graph case, we normalize the atoms by a factor
p

N (the modulation is a multiplication by

a normalized atoms). The discrete windowed Fourier atoms are given by:

gu,k [n] = g [n −u]
1p
N

exp

(
j 2πkn

N

)

all have the same norm N− 1
2
∥∥g

∥∥
2. Together these N 2 atoms comprise a tight frame on the ring

graph with frame bounds A = B = ∥∥g
∥∥2

2. Inserting these values into (4.16) and (4.17) yields

(4.14) and (4.15).

For the case of p ≥ 2, we also provide an alternative direct proof following similar ideas to

those used in Lieb’s proof for the continuous case [64]. The arguments below follow the sketch

of the proof of Proposition 2 in [102] and supporting personal communication from Bruno

Torrésani. We need two lemmas. The first one is a direct application of Theorem 7, where here

µG = 1/
p

N .

Lemma 12. Let x ∈CN and p be the Hölder conjugate of p ′ ( 1
p + 1

p ′ = 1). Then for 1 ≤ p ≤ 2, we

have

‖x̂‖p ′ ≤ N
1

p′ − 1
2 ‖x‖p .

Conversely, for 2 ≤ p ≤∞, we have

‖x̂‖p ′ ≥ N
1

p′ − 1
2 ‖x‖p .
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The second lemma is an equivalent of Young’s inequality in the discrete case. We denote

the circular convolution between two discrete signals x , y by x ∗ y . The circular convolution

satisfies �x ∗ y[`] = x̂ · ŷ[`].

Lemma 13. Let x , y be two discrete signal and 1 ≤ p, q,r ≤∞ satisfy 1+ 1
r = 1

p + 1
q . Then∥∥x ∗ y

∥∥
r ≤ ‖x‖p

∥∥y
∥∥

q .

Proof. The proof is based on the following inequalities [94, p. 174]

∥∥x ∗ y
∥∥

1 ≤ ‖x‖1
∥∥y

∥∥
1 (C.11)∥∥x ∗ y

∥∥∞ ≤ ‖x‖∞
∥∥y

∥∥
1 (C.12)∥∥x ∗ y

∥∥∞ ≤ ‖x‖p
∥∥y

∥∥
p ′ , (C.13)

where 1
p + 1

p ′ = 1. For a fixed vector y , we define an operator S y by (S y x)[n] = (x ∗ y)[n]. Using

(C.11) and (C.12), we observe that this operator is bounded from `1 to `1 by
∥∥y

∥∥
1 and from

`∞ to `∞ by
∥∥y

∥∥
1. Thus, we can apply the Riesz-Thorin theorem to this operator to get∥∥x ∗ y

∥∥
p ≤ ‖x‖p

∥∥y
∥∥

1 . (C.14)

Similarly, for a fixed vector x , we define another operator Tx by (Tx y)[n] = (x ∗ y)[n]. From

(C.14) and (C.13), we observe that this new operator is bounded from `1 to `p by ‖x‖p and

from `p ′
to `∞ by ‖x‖p . One more application of the Riesz-Thorin theorem leads to the desired

result: ∥∥x ∗ y
∥∥

r ≤ ‖x‖p
∥∥y

∥∥
q ,

where 1+ 1
r = 1

p + 1
q .

Alternative proof of Theorem 8 for the case p ≥ 2. Suppose p > 2 and let 1
p + 1

p ′ = 1. We denote
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the DFT by F. Noting that p
p ′ > 1, we have

∥∥ADDW F T x
∥∥p

p =
N∑

u=1

N−1∑
k=0

|ADDW F T x[u,k]|p

=
N∑

u=1

N−1∑
k=0

∣∣F(x[·]g [u −·])[k]
∣∣p

=
N∑

u=1

∥∥F(x[·]g [u −·])∥∥p
p

≤ N
p
2

N∑
u=1

N
p
p′ −

p
2
∥∥x[·]g [u −·]∥∥p

p ′ (C.15)

= N
p
2 −

p
p′

N∑
u=1

(
N∑

n=1
|x[n]g [u −n]|p ′

) p
p′

= N
p
2 −

p
p′

N∑
u=1

(
N∑

n=1
|x p ′

[n]||g p ′
[u −n]|

) p
p′

= N
p
2 −

p
p′

N∑
u=1

(
(|x p ′ |∗ |g p ′ |)[u]

) p
p′

= N
p
2 −

p
p′

∥∥∥|x p ′ |∗ |g p ′ |
∥∥∥ p

p′
p
p′

≤ N
p
2 −

p
p′

∥∥∥x p ′∥∥∥ p
p′

α

∥∥∥g p ′∥∥∥ p
p′

β
(C.16)

= N 1− p
2

∥∥∥x p ′∥∥∥ p
p′

α

∥∥∥g p ′∥∥∥ p
p′

β
,

for any 1 ≤α,β≤∞ satisfying 1
α + 1

β = p ′. Equation (C.15) follows from the Hausdorff-Young

inequality given in Lemma 12 and (C.16) follows from the Young inequality given in Lemma 13

with r = p
p ′ . Now we can perform a change variable a =αp ′ and b =βp ′ so that 1

a + 1
b = 1, and

(C.16) becomes

∥∥ADDW F T x
∥∥p

p ≤ N 1− p
2

∥∥∥x p ′∥∥∥ p
p′

α

∥∥∥g p ′∥∥∥ p
p′

β
= N 1− p

2 ‖x‖p
a

∥∥g
∥∥p

b . (C.17)

Finally, we take a = b = 2 and take the p th root of (C.17) to show the first half of Theorem 8.

Note that we cannot follow the same line of logic for the case 1 ≤ p ≤ 2 without a converse of

the Young’s inequality in Lemma 13.
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C.3 Local uncertainty proofs

C.3.1 Proof of Lemma 4

Proof.

〈T G
i g ,T G

n h〉 = 〈�T G
i g , �T G

n h〉 =
N−1∑
`=0

g (λ`)u`[i ]h∗(λ`)ū`[n]

=
N−1∑
`=0

(
g ·h

)
(λ`)u`[i ]ū`[n] = T G

i (g ·h)[n].

Moreover, a direct computation shows

(∑
i

∣∣〈T G
i g ,T G

n h〉∣∣p

) 1
p

=
(∑

i

∣∣∣pNT G
n (g ·h)[i ]

∣∣∣p
) 1

p

= ∥∥T G
b (g ·h)

∥∥
p .

C.3.2 Proof of Theorem 11

Proof. For notational brevity in this proof, we omit the indices i0,k0 for the quantities ĩ and k̃.

First, note that∥∥∥AgT G
i0

gk0

∥∥∥∞ = max
k

∥∥∥T G
i0

(gk0 · gk )
∥∥∥∞ ≤

∥∥∥T G
ĩ

g k̃

∥∥∥
2

∥∥∥T G
i0

gk0

∥∥∥
2

,

where k̃i0,k0 = argmaxk

∥∥∥T G
i0

(gk0 · gk )
∥∥∥∞ and ĩi0,k0 = argmini

∣∣∣T G
i0

(gk0 · g k̃ )[i ]
∣∣∣. Let us then in-

terpolate the two following expressions:∥∥∥AgT G
i0

gk0

∥∥∥
2
≤ B

1
2

∥∥∥T G
i0

gk0

∥∥∥
2

(C.18)

and
∥∥∥AgT G

i0
gk0

∥∥∥∞ ≤
∥∥∥T G

ĩ
g k̃

∥∥∥
2

∥∥∥T G
i0

gk0

∥∥∥
2

. (C.19)

We use the Riesz-Thorin Theorem (Theorem 24) with p1 = q1 = p2 = 2, q2 =∞, Mp = B
1
2 and

Mq =
∥∥∥T G

ĩ
g k̃

∥∥∥
2

. Note that Ag is a bounded operator from the Hilbert space spanned by T G
i0

gk0

(isomorphic to a one-dimensional Hilbert space) to the one spanned by {T G
i0

gk0 }i ,k . We take

t = 2
r2

and find r1 = 2, leading to

∥∥∥AgT G
i0

gk0

∥∥∥
r2

≤ B
1

r2

∥∥∥T G
ĩ

g k̃

∥∥∥1− 2
r2

2

∥∥∥T G
i0

gk0

∥∥∥
2

.
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Since Ag is a frame, we also have
∥∥∥AgT G

i0
gk0

∥∥∥
2
≥ A

1
2

∥∥∥T G
i0

gk0

∥∥∥
2

, which yields:

∥∥∥AgT G
i0

gk0

∥∥∥
2∥∥∥AgT G

i0
gk0

∥∥∥
p

≥ A
1
2

B
1
p

∥∥∥T G
ĩ

g k̃

∥∥∥1− 2
p

2
.

Finally, thanks to Hölder’s inequality, we have for p ≤ 2 and 1
p + 1

q = 1

∥∥∥AgT G
i0

gk0

∥∥∥
2∥∥∥AgT G

i0
gk0

∥∥∥
p

≤

∥∥∥AgT G
i0

gk0

∥∥∥
q∥∥∥AgT G

i0
gk0

∥∥∥
2

≤
B

1
q

∥∥∥T G
ĩ

g k̃

∥∥∥1− 2
p

2

A
1
2

≤
B 1− 1

p

∥∥∥T G
ĩ

g k̃

∥∥∥ 2
p −1

2

A
1
2

≤ B 1− 1
p
(
νĩ

∥∥g k̃

∥∥
2

) 2
p −1

A
1
2

.

C.3.3 Proof of Corollary 2

Proof. The proof follows directly from the two following equalities. For the denominators,

since the frame is tight, we have:∥∥∥AgT G
i0

gk0

∥∥∥
2
= A

1
2

∥∥∥T G
i0

gk0

∥∥∥
2

.

For the numerators, we have
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C.3. Local uncertainty proofs

∥∥∥AgT G
i0

gk0

∥∥∥∞ = max
i ,k

|〈T G
i gk ,T G

i0
gk0 〉|

= max
i ,k

|T G
i0

(gk · gk0 )[i ]| (C.20)

= max
k

∥∥∥T G
i0

(gk · gk0 )
∥∥∥∞

=
∥∥∥T G

i0
g 2

k0

∥∥∥∞ (C.21)

= |T G
i0

g 2
k0

(i0)| (C.22)

= 〈T G
i0

gk0 ,T G
i0

gk0 〉 (C.23)

=
∥∥∥T G

i0
gk0

∥∥∥2

2
,

where (C.20) and (C.23) follow from (4.21), (C.21) follows from the second hypothesis, and (C.22)

follows from the third hypothesis.

C.3.4 Proof of Corollary 3

Proof. We have

∥∥∥AgT G
i0

gk0

∥∥∥∞ = max
i ,k

|〈T G
i gk ,T G

i0
gk0 〉| ≥

∣∣∣〈T G
i0

gk0 ,T G
i0

gk0 〉
∣∣∣= ∥∥∥T G

i0
gk0

∥∥∥2

2
. (C.24)

Additionally, because {T G
i gk }i=1,2,...,N ;k=0,1,...,M−1 is a frame, we have∥∥∥AgT G

i0
gk0

∥∥∥
2
≤ B

1
2

∥∥∥T G
i0

gk0

∥∥∥
2

. (C.25)

Combining (C.24) and (C.25) yields the desired inequality in (4.26).

151





D Stationary signal processing on
graphs

D.1 Convex models

Convex optimization has recently become a standard tool for problems such as de-noising,

de-convolution or in-painting. Graph priors have been used in this field for more than

a decade [122, 139, 92]. The general assumption is that the signal varies smoothly along

the edges, which is equivalent to saying that the signal is low-frequency-based. Using this

assumption, one way to express mathematically an in-painting problem is the following:

ẋ = argmin
x

x∗Lx s.t.
∥∥M x − y

∥∥
2 ≤ ε (D.1)

where M is a masking operator and ε a constant computed thanks to the noise level. We could

also rewrite the objective function as x∗Lx +γ∥∥M x − y
∥∥2

2, but this implies a greedy search of

the regularization parameter γ even when the noise level is known. For our simulations, we

use Gaussian i.i.d. noise of standard deviationσ. It allows us to optimally set the regularization

parameter ε=σ√
#y , where #y is the number of elements of the measurement vector.

Graph de-convolution can also be addressed with the same prior assumption leading to

ẋ = argmin
x

x∗Lx s.t.
∥∥h(L)x − y

∥∥
2 ≤ ε (D.2)

where h is the convolution kernel. To be as generic as possible, we combine problems (D.1)

and (D.2) together leading to a model capable of performing de-convolution, in-painting and

de-noising at the same time:

ẋ = argmin
x

x∗Lx s.t.
∥∥Mh(L)x − y

∥∥
2 ≤ ε. (D.3)

When the signal is piecewise smooth on the graph, another regularization term can be used

instead of x∗Lx = ∥∥∇G x
∥∥2

2, which is the `2-norm of the gradient on the graph. Using the

`1-norm of the gradient favors a small number of major changes in signal and thus is better
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for piecewise smooth signals. The resulting model is:

ẋ = argmin
x

∥∥∇G x
∥∥

1 s.t.
∥∥Mh(L)x − y

∥∥
2 ≤ ε (D.4)

In order to solve these problems, we use a subset of convex optimization tools called proximal

splitting methods. Since we are not going to summarize them here, we encourage a novice

reader to consult [25, 58] and the references therein for an introduction to the field.

D.2 Proof of Theorem 17

Proof. The proof is a classic development used in Bayesian machine learning. By assumption

x is a sample of a Gaussian random multivariate signal x ∼ N
(
µ, s2(L)

)
. The measurements

are given by

y = H x +wσ,

where wσ ∼ N
(
0,σ2I

)
and thus have the following first and second moments: y |x ∼ N

(
H x ,σ2I )

)
.

For simplicity, we assume s2(L) to be invertible. However this assumption is not necessary. We

can write the probabilities of x and y |x as:

P [x] = 1

Zs−1(L)
e−‖s−1(L)(x−µ)‖2

2 = 1

Zs−1(L)
e−‖s−1(L)x̃‖2

2 ,

P
[

y |x]= 1

ZI
e−σ

2‖(H x−y)‖2
2 .

Using Bayes law we find

P(x |y) = P(y |x)P(x)

P(y)
.

The MAP estimator is

x̄ |y = argmax
x

P(x |y)

= argmax
x

log
(
P(x |y)

)
= argmin

x
− log

(
P(y |x)

)− log(P(x))+ log
(
P(y)

)
= argmin

x

∥∥s−1(L)x̃
∥∥2

2 +σ−2
∥∥(H x − y)

∥∥2
2

= argmin
x

‖w(L)x̃‖2
2 +

∥∥(H x − y)
∥∥2

2 ,

where w(L) =σs−1(L).
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D.3 Proof of Theorem 19

The following is a generalization of the classical proof. For simplicity, we assume that x = 0, i.e

x̃ = x .

Proof. Because, by hypothesis H = h(L) =U h(Λ)U∗, we can rewrite the optimization problem

(5.16) in the graph Fourier domain using the Parseval identity ‖x‖2 = ‖U x‖2 = ‖x̂‖2:

ˆ̇x |ŷ = argmin
x̂

‖w(Λ)x̂‖2
2 +

∥∥h(Λ)x̂ − ŷ
∥∥2

2 .

Since the matrix h(Λ) is diagonal, the solution of this problem satisfies for all graph eigenvalue

λ`

w2(λ`) ˆ̇x[`]+h2(λ`) ˆ̇x[`]−h(λ`)ŷ[`] = 0. (D.5)

For simplicity, we drop the notation (λ`) and [`]. The previous equation is transformed in

ẋ = h

w2 +h2 ŷ .

As a next step, we use the fact that ŷ = hx̂ + ŵσ to find:

ˆ̇x = h2x̂ +hŵσ

w2 +h2 .

The error performed by the algorithm becomes

ê = ˆ̇x − x̂ = −w2x̂

w2 +h2 + hŵσ

w2 +h2 .

The expectation of the error can thus be computed:

E
[
ê2] = w4E

[
x̂2

](
w2 +h2

)2 + h2E
[

ŵ 2
σ

](
w2 +h2

)2 − hw2E[x̂ ŵσ](
w2 +h2

)2

= w4s2 +h2σ2(
w2 +h2

)2 ,

with s2 the PSD of x and σ2 the PSD of the noise wσ. Note that E[x̂ ŵσ] = 0 because x and w

are uncorrelated. Let us now substitute w2 by z and minimize the expected error (for each λ`)

with respect to z:

∂

∂z
E
[
ê2] = ∂

∂z

z2s2 +h2σ2(
z +h2

)2

= 2zs2
(
z +h2

)−2
(
z2s2 +h2σ2

)(
z +h2

)3 = 0.

155



Appendix D. Stationary signal processing on graphs

From the numerator, we get:

2zs2h2 −2h2σ2 = 0

The three possible solutions for z are z1 = σ2

s2 , z2 =∞ and z3 =−∞. z3 is not possible because

z is required to be positive. z2 leads to ẋ = 0 which is optimal only if s2 = 0. The optimal

solution is therefore z(λ`) = σ2(λ`)
s2(λ`) , resulting in

w(λ`) =
√
σ2(λ`)

s2(λ`)
.

This finishes the first part of the proof. To show that the solution to (5.16) is a Wiener filtering

operation, we replace w2(λ`) by σ2(λ`)
s2(λ`) in (D.5) and find

x̂[`] = s2(λ`)h(λ`)

h2(λ`)s2(λ`)+σ2(λ`)
ŷ[`],

which is the Wiener filter associated to the convolution h(L) = H .

D.4 Proof of Theorem 18

Proof. Let x be GWSS with covariance matrix Σx = s2(L) and mean x =µ. The measurements

satisfy

y = H x +wσ,

where wσ is i.i.d noise with PSD σ2. The variable y has a covariance matrix Σy = H s2(L)H∗+
σ2I and a mean y = Hµ. The covariance between x and y is Σx y = Σ∗

y x = s2(L)H∗. For

simplicity, we assume s2(L) and H s2(L)H∗+σ2I to be invertible, however this assumption is

not necessary. The Wiener optimization framework reads:

ẋ = argmin
x

∥∥H x − y
∥∥2

2 +σ2
∥∥s−1(L)(x −µ)

∥∥2
2 .

We perform the following change of variable x̃ = x −µ, ỹ = y −Hµ and we obtain:

˜̇x = argmin
x̃

∥∥H x̃ − ỹ
∥∥2

2 +σ2
∥∥s−1(L)x̃)

∥∥2
2 .

The solution of the problem satisfies

H∗H ˜̇x −H∗ ỹ +σ2s−2(L) ˜̇x = 0.
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D.5. Development of equation 5.21

From this equation we get ˜̇x and transform it as:

˜̇x = (
H∗H +σ2s−2(L)

)−1
H∗ ỹ

= s(L)
(
σ2I + s(L)H∗H s(L)

)−1
s(L)H∗ ỹ

=
(

1

σ2 s2(L)H∗− 1

σ2 s2(L)H∗ (
σ2I +H∗s2(L)H

)−1
H s2(L)H∗

)
ỹ (D.6)

= 1

σ2 s2(L)H∗
(

I − (
σ2I +H∗s2(L)H

)−1
H s2(L)H∗

)
ỹ

= s2(L)H∗ (
σ2I +H∗s2(L)H

)−1
ỹ

= Σx yΣ
−1
y ỹ

where (D.6) follows from the Woodbury, Sherman and Morrison formula. The linear estimator

of x corresponding to Wiener optimization is thus:

ẋ = ˜̇x +µ
= Σx yΣ

−1
y (y −Hµ)+µ

= Σx yΣ
−1
y y +

(
I −Σx yΣ

−1
y H

)
µ

= Q y + (I −Q H)µ

We observe that it is equivalent to the solution of the linear minimum mean square error

estimator:

argmin
Q ,b

E
[∥∥Q y +b − ẋ

∥∥2
2

]
with y = H x +wσ. See [56, Equation 12.6].

Using similar arguments, we can prove that

ẋ = argmin
x

∥∥s−1(L)(x −µ)
∥∥2

2 s.t. y = H x

leads to

ẋ = s2(L)
(

H s2(L)H∗)−1
y +

(
I − s2(L)

(
H s2(L)H∗)−1

H
)
µ

and is thus a linear minimum mean square estimator too.

D.5 Development of equation 5.21

Proof. Let us denote the matrix of squared distances Dx [i , j ] = 1
K

∑
k |xk [i ]− xk [ j ]|2 for the

samples {x1, x2, . . . xK } of the random multivariate variable x on a N vertices graph. Let us
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Appendix D. Stationary signal processing on graphs

assume further that µ[k] =∑N
n=1 xk [n] = 0. We show then that Σ̇x =−1

2 J Dx J where Σ̇x is the

covariance (Gram) matrix defined as Σ̇x [i , j ] = 1
K

∑K
k=1 xk [i ]xk [ j ] and J is centering matrix

J [k, l ] =δk [l ]− 1
N .

We have

(J Dx J )[i , j ] = Dx [i , j ]+N−2
N∑

k,l=1
Dx [k, l ]−N−1

N∑
k=1

(Dx [i ,k]+Dx [k, j ])

Let us substitute Dx [i , j ] = Σ̇x [i , i ]+ Σ̇x [ j , j ]−2Σ̇x [i , j ], then we find

(J Dx J )[i , j ] = Σ̇x [i , i ]+ Σ̇x [ j , j ]−2Σ̇x [i , j ]+N−2

(
2N

N∑
n=1

Σ̄x [n,n]−2µ∗µ

)

− N−1

(
N Σ̇x [i , i ]+N Σ̇x [ j , j ]+2

N∑
n=1

Σ̇x [n,n]−2µ∗(x[ j ]+x[i ])

)
= −2Σ̇x [i , j ]−2N−2µ∗µ+2N−1µ∗(x[ j ]+x[i ]).

Under the assumption µ[k] =∑N
n=1 xk [n] = 0, we recover the desired result Σ̇x =−1

2 J Dx J .

D.6 Proof of Theorem 15

Proof. The estimator is unbiased as

E
[
γ̇x (λ`)

] = 1

M

M∑
m=1

E
[

x∗
mu`u∗

`xm
]

= 1

M

M∑
m=1

E
[

x̂∗
m[`]x̂m[`]

]= γx (λ`).

Furthermore, the bias is given by

Var
[
γ̇x (λ`)

] = E
[∣∣γ̇x (λ`)

∣∣2
]
= 1

M
E
[∣∣x∗u`u∗

`x
∣∣2

]
= 1

M
E
[∣∣x̂∗[`]x̂[`]

∣∣2
]
= 1

M
E
[|x̂[`]|4]= γx (λ`)

m̂4[`]

K
.

This concludes the proof.
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D.7 Proof of Theorem 16

Proof. Let us start with the bias. Using the Lipschitz property of γx (λ`), we write

∣∣E[γ̈x (kτ)−γx (kτ)
]∣∣= ∣∣∣∣∣N−1∑

`=0
g 2(λ`−kτ)

γx (kτ)∥∥g (λ−kτ1)
∥∥2

2

−γx (kτ)

∣∣∣∣∣
≤ ∣∣Aγx (kτ)

∣∣+ ε∥∥g (λ−kτ1)
∥∥2

2

N∑
`=1

g (λ`−kτ)2 |λ`−kτ|

where by definition A =∑K
k=1

g 2(λ`−kτ)

‖g (λ−kτ1)‖2
2

−1 = 0, and the claim follows.

We now need to prove the second part of the theorem concerning the variance. Set wn,τ =
g (ϑ−ϑn,τ)2

cg (ϑ) . The centered random variable

γ̈x (λ)−γx (λ) =
N ,T∑
n,τ

wn,τ(ḣ(ϑn,τ)−h(ϑn,τ))

is a weighted sum of independent random variables ḣ(ϑn,τ)−h(ϑn,τ), which according to

Theorem 15 have variance h2(θn,τ)
E
[
ε̂4

n,τ

]−1
K . It follows that,

Var
[
ḧ(ϑ)

]= N ,T∑
n,τ

w2
n,τE

[
(ḣ(ϑn,τ)−h(ϑn,τ))2]

=
N ,T∑
n,τ

w2
n,τh2(θn,τ)

E
[
ε̂4

n,τ

]−1

K
,

which matches our claim.
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E Manifold regularization via graph
total variation

Lemma 14. Given an open set S and
∫

x∈S ||A(x)|− |B(x)||dµS (x) = 0, we have∫
x∈S

|A(x)|dµS (x) =
∫

x∈S
|B(x)|dµS (x)

Proof. A simple observation shows∣∣∣∣∫
x∈S

|A(x)|dµS (x)−
∫

M
|B(x)|dµS (x)

∣∣∣∣≤ ∫
x∈S

||A(x)|− |B(x)||dµS (x , ) = 0whi chi mpl i esthedesi r edr esul t .

Lemma 15. Given x ∈Rk , we have∫
x∈Rk

e
−‖x‖2

t ‖x‖2
2 dx = k

2
t

k+2
2 π

k
2 . (E.1)

Proof. Let us use an induction. First For k = 1, we integrate by parts to obtain the result.

∫
x∈R

e
−x2

t x2dx =
∫

x∈R

(
xe

−x2

t

)
xdx =

∫
x∈R

t

2
e

−‖x‖2

t dx = t

2
(πt )

1
2 = t

3
2π

1
2

2

Then, supposing that the relation is true for x ∈ Rk , we need to prove it for x ∈ Rk+1. For
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convenience the i element of the vector x is written xi . We have

∫
x∈Rk+1

e−
‖x‖2

t ‖x‖2
2 dx =

∫
x∈Rk

e−
x2

1+···+x2
k

t
(
x2

1 +·· ·+x2
k

)
dx1 . . .dxk

∫
xk+1∈R

e−
x2

k+1
t dxk+1

+
∫

x∈Rk+1
e−

x2
1+···+x2

k
+x2

k+1
t x2

k+1dx1 . . .dxk dxk+1

=
∫

x∈Rk
e

−‖x‖2

t ‖x‖2
2 dx

∫
x∈R

e−
x2

k+1
t dxk+1

+
(∫

x∈R
e

−x2
k+1
t x2

k+1dxk+1

)(∫
x∈R

e−
x2

t x2dx

)k

= k

2
t

k+2
2 π

k
2

(tπ)
1
2

2
+ t

3
2π

1
2

2

(
(tπ)

1
2

)k = k +1

2
t

k+3
2 π

k+1
2 ,

which concludes the induction and hence the proof.

Lemma 16. Given x ∈Rk , we have∫
Rk

e
−‖x‖2

t ‖x‖4
2 dx = k2 +2k

4
t

k+4
2 π

k
2 (E.2)

Proof. Let us use an induction. First For k = 1, we integrate by parts to obtain the result.

∫
x∈R

e
−x2

t x4dx =
∫

x∈R

(
xe

−x2

t

)
x3dx

= − t

2
e

x2

t x3
∣∣∣∣∞−∞+ 3t

2

∫
x∈R

x2e
−x2

t dx

= 3t

2

t
3
2π

1
2

2
= 3

4
t

5
2π

1
2 ,

where we take advantage of Lemma 15. Then, supposing that the relation is true for x ∈Rk , we

need to prove it for x ∈Rk+1. For convenience the i element of the vector x is written xi . We
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have ∫
x∈Rk+1

e−
‖x‖2

t ‖x‖4
2 dx

=
∫

x∈Rk+1
e−

x2
1+···+x2

k
+x2

k+1
t

(
x2

1 +·· ·+x2
k +x2

k+1

)2
dx1 . . .dxk dxk+1

=
∫

x∈Rk+1
e−

x2
1+···+x2

k
t e−
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which concludes the induction and hence the proof.

Lemma 17. Given p ∈Rk , we have :∫
x∈Rk

e
−‖x‖2

t |〈p , x〉|dx = t
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2 π
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2
∥∥p

∥∥
2 (E.3)

Proof. The function e
−‖x‖2

t is isotropic as it does not depend on the direction of x , but only it’s

norm. To solve the integral, we make the following change of coordinates y = R x with R a

unitary rotation matrix such that 〈p , x〉 = ∥∥p
∥∥

2 〈δ1, y〉. The integration leads to the result
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