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Abstract

Redundant Gabor frames admit an infinite number of dual frames, yet only the canonical dual Gabor system, constructed from the
minimal £*-norm dual window, is widely used. This window function however, might lack desirable properties, e.g. good time-
frequency concentration, small support or smoothness. We employ convex optimization methods to design dual windows satisfying
the Wexler-Raz equations and optimizing various constraints. Numerical experiments suggest that alternate dual windows with

considerably improved features can be found.
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1. Introduction

Filterbanks, in particular those allowing for perfect recon-
struction (PR), are fundamental and essential tools of signal
processing. Consequently, the construction of analysis/synthesis
filterbank pairs forms a central topic in the literature, relying on
various approaches, like polyphase representation [[1] or alge-
braic methods [2]]. Other methods rely on frame theory [3],
similar to the approach we wish to present. Probably the most
widely adopted type of filterbank are modulated cosine and Ga-
bor filterbanks (or transforms) [4, 5, 6], which are closely re-
lated. Gabor transforms, also known as sampled short-time
Fourier transforms, provide a uniform time-frequency represen-
tation by decomposing a signal into translates and modulations
of a single window function. They have been used in various
applications, among others [7, (8} 19, [10]], and variations [[11} 12}
13]]. Such filterbanks have a rich structure, are easy to interpret
and allow for efficient computation. A substantial body of work
exists on the subjects of invertibility of Gabor filterbanks, per-
fect reconstruction pairs of Gabor windows and window qual-
ity, with a strong emphasis on the overcomplete case [14}, [15]].
The ability of the analysis filterbank to separate signal compo-
nents and the precision of the synthesis operation, after coeffi-
cient manipulation, depend crucially on the time and frequency
concentration of the windows used. While either the analysis
or synthesis window can be chosen almost freely, tuned to the
desired properties such as optimal time and frequency concen-
tration, choice of the dual window is restricted to the set of
functions such that a PR pair is obtained. For computational
reasons, detailed below, there is a canonical choice for the dual
window, used almost exclusively. However, this canonical dual
window might not be optimal with regards to the desired cri-
teria, such as time-frequency concentration or short support,
required for high quality processing and efficient computation
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respectively.

Therefore, a flexible method to compute optimal (or opti-
mized) dual windows, considering the full set of possible choices
and valid for any set of starting parameters, provides a valuable
tool for the signal processing community. We obtain such a
method by merging considerations from the theory of Gabor
frames with the tools provided by modern convex optimization.
The optimization framework we present is not limited to con-
centration or support optimization, but allows optimization with
regards to any criterion that can be expressed through a suitable
convex functional. Nonetheless, the aforementioned criteria are
of universal importance and well-suited to demonstrate the ca-
pabilities and limitations of our method, which is why they form
the focus of this contribution.

Since all dual windows perform perfect reconstruction from
unmodified Gabor coefficients, the purpose of constructing al-
ternative dual windows might not immediately be obvious be-
side the minimization of the support. However, if the coeffi-
cients are modified, e.g. through signal processing procedures
such as frame multipliers [[16} [17, [18], also known as Gabor
filters [19], the shape of the dual window plays an important
role in the quality and localization of the performed modifica-
tions. After processing, a signal is synthesized from the modi-
fied coeflicients employing a dual Gabor filterbank. Let us illus-
trate the consequences of the window on the synthesis process
after modification of the time-frequency representation with a
toy example. For this example, we wish to remove an unde-
sirable time-frequency component from a synthetic signal. In
Figure[I] we want to remove a localized sinusoid with only mi-
nor alteration of the remaining signal. This filtering operation
relies on a joint time-frequency representation, since at each
time or frequency position, several signal components are ac-
tive. Although both dual windows, naturally, fail to eliminate
the sinusoid completely, they provide visibly different synthesis
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Figure 1: Reconstruction from modified coefficients: (a) analysis window used
to compute the spectrogranﬂ (b) Spectrogram of a synthetic test signal, (c)
Unachievable ’oracle’ target spectrogram, (d) modified spectrogram. (e)(g) 2
different dual windows and (f)(h) spectrograms after synthesis from modified
coeflicients. Note that the smearing effect depends on the concentration of the
synthesis window.

In the given example, the first synthesis operation was per-
formed with the canonical dual window, while an alternative
dual window with improved time concentration was computed
for the second. For redundant Gabor filterbanks, infinitely many
alternative dual windows exist, enabling the synthesis system
choice based on the requirements of the desired application [20].
Yet, traditional methods utilize the so-called canonical dual
window, the only dual window that can be obtained directly
by applying a linear operator (the inverse frame operator) to the
original window.

We propose a convex optimization scheme that selects a
dual window such that one or more regularization parameters of
the user’s choice are optimized. As the solution of a convex op-
timization problem, the proposed window will be optimal with
regards to the selected criteria, provided that the set of admissi-
ble dual windows is nonempty.

Innovations of this contribution: We propose a general frame-
work to compute Gabor dual windows satisfying individually
selected criteria, expressed in a convex optimization problem.
For this purpose, we combine frame-theoretical results with

2The spectrogram is the squared magnitude of a Gabor-type TF representa-
tion.

modern convex optimization. In particular, we demonstrate
how our method can be used to provide dual windows with
small support, essential for efficient computation, or with opti-
mized time-frequency concentration. Employing various com-
mon measures of time-frequency concentration, our experiments
show that these criteria can be considerably improved upon the
widely-used canonical dual window.

Through the selection of various optimization parameters,
our method can be used to explore the set of dual Gabor win-
dows, with the aim to better understand the restrictions imposed
by the duality condition.

Finally we introduce a, purely heuristic, method to design
tight windows, based on the proposed convex optimization tech-
nique. Although the tight window problem is not anymore a
convex problem and we cannot provide any convergence guar-
antee, we observe experimentally that favorable results can be
obtained.

The implemented procedure is available as part of compre-
hensive open-source toolboxes maintained by the authors. An
online addendum provides extended computational results and
script files reproducing all the presented experiments.

Related work: A wealth of research investigating the sub-
ject of dual Gabor windows exists. On the theoretical side,
state-of-the-art results are available in [4} [21]], support proper-
ties of dual windows are investigated in [[14} 1522} 23| 24]] and
some specific constructions for dual window pairs are presented
in [25 126} 27, 28], to name a few. Methods from complex anal-
ysis have been used to construct Gabor frames with Gaussian
or Hermite windows [29}, 30, 31]]. Filters optimizing classical
window quality measures are constructed in [32} 33]], without
frame theoretic considerations. Recent results on phase space
covers [34,135], based on a collection of Gabor systems, require
certain decay of the dual windows, not necessarily provided by
the canonical dual. Thus, the study of alternate dual windows
is necessary.

A method for computing dual windows satisfying specific
support constraints was proposed by Strohmer [36]], based on
the Moore-Penrose pseudoinverse of a linear equation system
describing duality and the support conditions. The method therein
allows the use of other regularization constraints, if these can
be expressed through a Hermitian positive definite matrix, e.g.
weighted £2-norms. Already Wexler and Raz [37] impose linear
constraints to find alternative dual windows, while Daubechies
et al. [38]] present a formula for finding dual windows that are
optimal in a modified L? sense. More similar to our approach,
the authors in [39] solve a different convex optimization prob-
lem to find sparse dual systems using a weighted ¢'-norm. They
also provide a method to obtain compactly supported dual win-
dows. This problem is optimized for the research of sparse win-
dows and not suitable for other constraint such as smoothness.
With the method proposed in this paper, similar results can be
obtained, but sparse dual windows only form a particular exam-
ple for its possible applications. The existence of sparse dual
frames is also investigated in [40]], without assuming a filter-
bank structure.

Recently, convex optimization in the context of signal pro-



cessing has grown into a active field of research and in partic-
ular proximal splitting methods [41} 42 43]] have been used to
great effect, e.g. in audio inpainting [[10, 44] and sparse repre-
sentation [45]]. In those cases, optimization techniques are ap-
plied directly to the signal or its time-frequency (TF) represen-
tation. In this contribution, we apply optimization techniques
to shape the building blocks of the TF representation instead.

Motivation and potential applications: Motivated by Fig-
ure [1| it seems clear that an optimization of the dual window
can have significant relevance for acoustical applications. How-
ever, to our knowledge, alternate duals are not yet used in that
field, while there are already some signal processing investiga-
tions using alternate duals for more than a decade, see e.g. [46].
That is mainly because the acceptance of frame theory by en-
gineers in signal processing is an ongoing process [47 48],
and still not fully completed. As a consequence, frame the-
ory, and with it the usage of the canonical dual window, has
been established as a useful tool in audio and acoustical appli-
cations only rather recently [49]. While already before the ac-
ceptance of frame theory some investigation in the tuning of the
re-synthesis stage has been performed (for example in computa-
tional auditory scene analysis [50], or speech processing [51]]),
applied scientists often used the same window [52]] or even the
rectangular window in the overlap-add approach [53].

In this paper we provide intuitive ideas and efficient tools
for applied scientists to work with alternate dual windows. We
are convinced that many applications will benefit form opti-
mized dual windows, as soon as a coefficient domain modi-
fication is attempted. Such modification is ubiquitous in sig-
nal processing, e.g. in denoising [54]], signal detection [55],
time-stretching and pitch-shifting [S6, [57, 158} 59], modifica-
tion of the spectrogram [60, |61]], irrelevance filtering [62} 63],
speech recognition [64], to name a few. Furthermore, jointly
optimizing support and smoothness of the synthesis window
can provide block-processing algorithms with reduced delay
and blocking artifacts, possibly even at lower redundancy than
usual. Without a doubt, optimized dual windows can have nu-
merous applications in the future.

Organization of the paper: This work is an extension of [65]].

For the sake of being self-contained, we repeat some results pre-
sented therein. We begin by recalling the essential background
from convex optimization, as well as important concepts from
the theory of Gabor frames. In particular, we are interested
in the characterization of dual Gabor windows by means of a
linear equation system and we show that compactly supported
dual window pairs are dual independent of the signal length.
The convex optimization problem central to our investigation
is introduced in Section [3] where we also discuss the consid-
ered optimization criteria and their effects in the setting of dual
Gabor windows. Finally, Section 4] presents a set of examples
designed to illustrate how to use our method for optimizing or
adjusting the time and frequency concentration of the dual win-
dow for a given starting window. We compare the results visu-
ally, in terms of the optimization criteria and classical measures
of window quality. Further numerical experiments demonstrate

the construction of smooth dual windows with short support and
good frequency concentration and how the proposed optimiza-
tion scheme can be employed, albeit heuristically, for finding
time-frequency concentrated, compactly supported tight win-
dows.

2. Preliminaries

In this contribution, we consider sampled functions, i.e. se-
quences f in ¢?(Z) or CE. The latter is interpreted as the space
of L-periodic sequences with indices considered modulo L. For
such f, we refer to the smallest closed interval containing all
nonzero values of f as its support, denoted by supp(f). By x|y
we denote that y/x € Z.

Furthermore, we denote translation and modulation opera-
tors

T,.f[l] = f[l — n] and M, f[1] = f[I]e*™!,

for f € ¢3(Z),l,n € Z and w € [0, 1). Their counterparts on C*
are defined in the usual way with indexing modulo L.

2.1. Convex optimization and proximal splitting

In subsequent sections we design Gabor dual windows as
the solution to convex optimization problems of the form

K
minimize ; fi(x), ()
where the f; are convex functions that promote certain features
in the solution. Those functions are also referred as (regulariza-
tion) priors. Various methods exist to solve this kind of prob-
lem for differentiable priors [66]]. However, proximal splitting
methods [41] only require the f; to be lower semi-continuous,
convex and properE] functions, thus allowing to increase the de-
sign freedom. Those methods solve Equation (I)) by iteratively
applying the proximity operator

(1
prox, () i arg min { 31y~ 13 + 1 (1)}
xeRE

to each prior f;. More information and convergence results can
be found in [67, (68 41]].

Restriction of the optimization to a convex subset C of RE,
e.g. the set of dual Gabor windows, is achieved by selecting the
indicator function

0, if xeC
+oo  otherwise.

ic:RL—>{O,+oo}:xH{ 2)

as prior. Its proximity operator is given by the orthogonal pro-
jection on C.

3A proper function f on a domain C is function satisfying f(x) >
—00,Vx € C and 3x € C such that f(x) < o0



2.2. Gabor systems, frames and dual windows
We define the Gabor system
g(g7 a, M) = (gm,n = m/MT””g)neZ, m=0....M—1 (3)

.....

for a given window g € ¢2(Z), a hop size a € Z and a number
of frequency bins M € Z.

For any signal f € ¢*(Z), the Gabor coefficients (or Gabor
analysis) with respect to G(g, a, M) are given by

(GA)m+nM] = f.gmay = 2. f) gmalll. (4
IeZ
with the analysis operator G given by the infinite matrix G[m +
nM, 1] := Ggam[m + nM, 1| := gu,[l].
Gabor synthesis of a coefficient sequence ¢ € ¢?(Z) with
respect to G(g, a, M) is performed by

M—1
fonlll = (G*)[1] = >. D" clm+nM] guall]. (5

neZ m=0

where G* denotes the transpose conjugate of G. In CE, a Gabor
transform with a = 1 and M = L is also known as (full) short-
time Fourier transform (STFT). This highly overcomplete setup
allows for straightforward inversion using the synthesis opera-
tor, i.e. f = G*Gf [4]. Otherwise, we require that G(g,a, M)
forms a stable, (over-)complete system satisfying

Alf13 < |GF[3 < B|f|3. forall f € ¢*(Z), (6)

for some 0 < A < B < o0, i.e. a Gabor frame [21]. In that
case, every signal f € ¢>(7) can be written as

f= G;,Q,Mc @)

for some coefficient sequence ¢ € (*(Z). A frame is tight, if
A = Bis a valid choice. Then & = g/A is a dual window. The
frame property guarantees the existence of a dual Gabor frame
G(h,a, M) such that f = G\ (Ggamf) = G¥,\/ (Gramf)
holds for all f € ¢>(Z). Hence, c in (7)) can be chosen to be the
Gabor coefficients with respect to G(h, a, M).

If G(g,a, M) is redundant, then the dual window h € ¢*(Z)
is not unique. Instead, the space of dual windows equals the
solution set of the Wexler-Raz (WR) equations [37, 169], that
characterize the dual Gabor windows for G(g,a, M). They are
given by

M .
; <h’g[. _ nM]627rtm~/a> _ 6[11]5[}’)1]
or Gguqh = [a/M,0,0,...]",

®)

form = 0,...,a — 1, n € Z. Here, § denotes the Kronecker
delta. Note that, while G, is overcomplete, Gg 4 1S un-
derdetermined and admits infinitely many solutions, whenever
a<M.

The WR equations form the central step towards the formu-
lation of the Gabor dual problem in the context of convex opti-
mization. Any function in this set facilitates perfect reconstruc-
tion from unmodified coefficients, but some are better suited

for synthesis from processed coeflicients than others, see Fig-
ure E} From now on, we will denote by C,, the solution set
of the nontrivial WR equations, forming the basic constraint of
the considered optimization problem.

The canonical dual window, defined via the pseudoinverse
of the analysis operator G, u, is the only widely used dual.
It can be computed efficiently, see e.g. [70l [71]. We note that
the canonical dual window y minimizes the £>-norm as well as
the ¢2-distance to g among all duals, see e.g [4, Prop. 7.6.2].
Unless certain very specific conditions are satisfied, the canon-
ical dual is infinitely long [22], preventing finite time synthe-
sis. The most prominent setup that provides a compactly sup-
ported canonical dual is the painless case, i.e. when the length
of g is less or equal than the number of channels M. Therefore
the setup where the length of the window equals the number of
channels is omnipresent in signal processing, to the point where
these two numbers are sometimes not distinguished. For inte-
ger redundancy, the conditions in [22] are even equivalent to the
painless case.

Gabor dual windows beyond the canonical dual: A con-
siderable amount of research on alternative Gabor dual win-
dows has been conducted, mostly concerned with finding dual
pairs of windows with compact support. Such results often con-
sider special configurations of analysis window [26 28] and/or
Gabor parameters [25} 14, [15]. While compactly supported du-
als play a central role in this contribution, our method admits
further design freedom and does not impose constraints on the
analysis window or Gabor parameters. To ensure efficient com-
putation, it is crucial to establish the independence of the du-
ality conditions from the signal length L, for compactly sup-
ported pairs of dual windows. This property, while widely ac-
cepted in the community, seems not to have found its way into
the literature explicitly. Since it forms a central point of our
argument, we will now state the result including a short proof.
We now assume the existence of finite intervals /I, I, such that
supp(g) < I, for the analysis window and supp(h) < I, for the
solution dual window.

Lemma 1. Let I, I, be intervals of length L, and L;, with
nonempty intersection. For any Gabor system G(g,a, M) with
supp(g) < I, and any h € €*(Z) with supp(h) < I, all but
a[#] of the WR equations are trivally satisfied. Moreover,
if (h, g)p = a/M, then the following are equivalent:

(i) g h are Gabor dual windows on *(Z) for a, M,

(ii) For any L > L, + Ly with a,M | L, ggin, hyfin, defined
by gginll] = Yyez ll — kL] and hyiy = Yyez 81l — kL]
forl=0,...,L— 1, are Gabor dual windows on (CLfor
a, M.

Moreover, (i)=(ii) holds for any L > Ly, L, witha, M | L.

Proof. By assumption there are ng,n; € Z, with np < 0 < n
such that I, n (I, + nM) # F forny < n < ny and I, n (I, +
nM) = ( for every other n € Z. In particular, n; — ny <
[2t] _ 1. Therefore (b, M,,,—1 T,yg) = O forall n € Z s.t.



. Ly+L
n < mp or n > ny, proving that at most a[%] of the WR
equations are not trivial. Now let L € N such that L > L, + L,

and M | L. It is easily seen that

<hfin’ CXP(Zﬂim . /a)TnMgfin>(CL = <hv Mma—‘ TnMg>€2 (9)

holds for all m = 0,...,a — 1 and ny < n < nj, proving
(il)=(). Note that translation on the left side of the equation
is circular and L > L, + L; guarantees that the sums defining
&fin» hyin possess only a single nonzero term each. To prove
(i)=(ii), observe that L > L, + L, implies {f;,, exp(2mim -
Ja)Tmgfinyct = 0forny < n < L/M — ny. For the final part,
assume for now that I,, I, are centered around 0. If L > L,, Ly,
and a, M | L, then the sums defining &fin» hyin possess only a
single nonzero term each still and

o1m)oTm) = (hyins ginl: — nMJe>m /)

_ (Mo (Tast 8 + Tiumrs1) 8) >[2
<h’ Mm/u (TnM 8§+ T(anL) g) >[2

If either (or both) of I,, I are not centered at 0, the result is
obtained by a suitable index shift in n. O

(CL
ifnM < LJ2,
it nM > L/2.

Note that the condition (h, g)p = a/M can be easily ful-
filled be multiplying /& with a scalar factor, as long as g and &
are not orthogonal to each other.

Compactly supported duals by truncation: In 1998,
Strohmer proposed a simple algorithm for the computation of
compactly supported dual windows when a compactly supported
analysis window is given [36]. The algorithm, which we will
refer as the truncation method, requires no additional restric-
tions to the analysis system, similar to our own approach. The
truncation method is based on the fact that a support constraint
on the dual window is equivalent to deleting the correspond-
ing columns in the WR matrix (8)) and computing only the val-
ues that are possibly nonzero. The resulting equation system
is then solved by computing the pseudoinverse, obtaining the
least-squares solution. While the resulting windows satisfy the
duality conditions, they are not very smooth and indeed show
some discontinuity-like behavior, see Figure @e,f). One of the
goals of this contribution is the improvement of these undesir-
able effects.

Strohmer’s method is not restricted to support constraints,
but can be adjusted for the direct computation of a dual window
h € Cuuq that minimizes |RA|,, for some Hermitian positive
definite matrix R. However, [36] does not explore this possi-
bility beyond the proposition of weighted £2-norm optimization
and the method remains more restrictive than a general convex
optimization formulation.

3. Design of optimal dual windows

For a given Gabor frame G(g,a, M) the construction of a
suitable Gabor dual window supported on an interval [, can be
accomplished by solving

K
arg min Eﬁ(x),

XECqual mcsupp i=1

(10)

where Cyyal is the set of dual windows, Cypp the set of all func-
tions in £,(Z) supported on I, and f; are priors that promote
certain features in the solution. In practice, each f; is weighted
by a regularization parameter A; > 0 for tuning the quantita-
tive relations between the priors. Moreover, we only consider
real-valued, symmetric windows g and real-valued solutions.
Those two supplementary constraints are not mandatory for op-
timization. However, they are used in most applications. For
real-valued g, the canonical dual window is guaranteed to be
real-valued, as a direct consequence of the Walnut representa-
tion of the Gabor frame operator [21]. Hence, the set of real-
valued dual windows is a nonempty affine subspace of all dual
windows. Note that the constraint x € Cyp, can be dropped if a
solution only for a specific finite dimensional setup is required.
However, when a dual window for £,(Z) or independent from
the signal length L is desired, the finite support constraint is
mandatory. Beyond this consideration however, reduced sup-
port L, « L is often desired to improve the efficiency and to
shorten the processing delay. Another minor decrease in com-
plexity can be obtained by reducing the number of frequency
channels M, while keeping the redundancy M/a fixed, thus fa-
voring non-painless configurations.

The process of selecting and tuning the priors f; is very
flexible and therefore heavily dependent on the intended appli-
cation, which is reminiscent of the situation for the search of
the optimal window. Here, we will mainly investigate the op-
timization of several classical measures of time, frequency and
TF concentration. This problem is of particular importance,
since joint TF concentration (or equivalently TF smoothness) is
crucial for the minimization of artifacts, when performing local
modification of TF coefficients in processing application. A list
of the priors we consider is provided in Table|l|and their effect
is discussed in the next section.

Remark 1. For a solution to Equation (I0) to exist, obviously
Caual 0 Csupp # & is required. It is known [36|] that the WR
equations are linearly independent. The same can easily be
seen for the equations describing the support set Cy,p,,. How-
ever, when jointly considering both equation systems, we have
observed linear dependencies for nonrandom analysis windows.
Linear dependencies can theoretically lead to unsolvable sys-
tems or additional degrees of freedom. However, in practice,
we have only observed the latter and controlling the number of
equations is usually sufficient for ensuring solvability, but might
not be optimal in the sense of minimality. An investigation of
this issue is planned for a later contribution.

Simulations were performed using the LTFAT [72] and the
UNLocBoX Matlab toolbox [73]. A reproducible research ad-
dendum with additional material and MATLAB scripts that re-
produce the presented results is available in https://1ts2.
epfl.ch/rrp/gdwuco/. We refer to this address as the web-

page.

3.1. Functionals and proximal operators

In order to tune the solution of a convex optimization prob-
lem (T0) towards the properties we desire, we have to select


https://lts2.epfl.ch/rrp/gdwuco/
https://lts2.epfl.ch/rrp/gdwuco/

priors f; that promote these properties. In this contribution, we
mostly consider priors that are fairly standard in optimization,
or simple extensions of such priors. Their various effects are
quite well known, e.g. £' optimization favors solutions with a
few large values while an £2 prior favors a more even spread
of the energy, but considerable limitations are imposed by the
duality constraint. Although the set of Gabor dual windows is
characterized by the WR equations, their implications in terms
of window shape, localization, decay etc. remain largely unex-
plored. Therefore a short discussion of relevant priors, expected
effects and their actual effect in our context seems worthwhile.

All the examples provided in this section were computed
with an Itersineﬂ analysis window with L, = 60 L = 240,
a = 15 and M = 120, without support constraints. This setup,
in particular its high redundancy, allows us to shape the dual
windows rather freely for different objective functions, there-
fore producing characteristic examples. The window is shown
in Figure[2] The canonical dual (not depicted), equals the win-
dow up to scaling.
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Figure 2: The Itersine window and its magnitude frequency response (in dB).

£'-norm minimization is usually considered, whenever (ap-
proximate) sparsity, i.e. a small number of (significant) non-
zero values is desired. As the convex relaxation of the ¢° min-
imization problem, it is equivalent or at least close to sparsity
optimization under certain conditions [39}[74]. In general, these
conditions are not satisfied by Equation (T0). Nevertheless, the
restrictions imposed by the WR equations usually allow a so-
lution with few large values. Such solutions are favored by the
{'-norm prior. However, small ¢'-norm alone does not imply
clustering of the large values, i.e. a solution supported on a
short interval. With the window g concentrated around zero,
it is expected however, that any dual window necessarily has
non-negligible values around zero. Hence, the optimization of
£'-norm while enforcing the duality constraint provides a local-
ized dual, see Figure 3| (a)(b). In the presented experiment, the
' solution possesses only 15 values above —80 dB (relative to
the maximum amplitude) on an interval around 0O, only half the
number of WR equations ﬁa = 30. However, other configura-
tions have provided solutions with few significant values spread
over a larger interval, see the webpage.

The proximity operator of the £! prior is computed by soft-

4The Ttersine window g(f) = sin(0.5x cos(m)z)/\([,l/z,l/z], where y; is the
characteristic function of 7, is designed to form a tight frame in the painless
case with half overlap. This is equivalent to the sum of the squared modulus of
the translated windows summing to a constant, a property that is retained for
any appropriately sampled version.

thresholding:

soft, (v) = sgn(y) ([y| — ),

where (-); = max(-,0). For compactly supported dual win-
dows, strict bandlimitation is clearly not feasible. Therefore,
when applied in the Fourier domain, the ¢! prior cannot achieve
a truly sparse solution, but promotes a small number of signif-
icant values. In many cases, the result is similar to actual con-
centration measures, compare Figure Ekc)(d) and Figureﬁka)(b).
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An £2 prior will, in our context, always lead to the canon-
ical dual Gabor window. In general, this prior will affect the
values in a more proportional way over the whole signal range.
It is traditionally used as a data fidelity term, i.e. the solution is
expected to be close, in the £>-norm sense, to a given estimate.
The associated objective function is not only convex, but also
smooth, admitting gradient descent approaches for minimiza-
tion.

a) Concentration inducing functions: Our main objective
in the following section will be the search for a Gabor dual
window with optimized/modified TF concentration. Therefore
we recall a number of different concentration measures. In-
spired by the famous Heisenberg inequality, the most natural
way to impose localization is to optimize the variance of the
signal x € RE or more precisely, its modulus:

L/2—1
var(ja) = 1/ VL Y (i [d)?|x

i=—L/2
with [x| = Zle/ 2:L1/2
consider symmetric windows x = 0, we can simplify this ex-
pression to: var(|x|) = 1/\/ZZL/2_1 (i)%|x;]. In that cas

i|x;| being the center of gravity. As we

i=—L/2
the variance turns out to be a weighted ¢'-norm with quadratic

SIf the center of gravity is not fixed to 0, the variance is not a weighted
¢1 norm anymore and its optimization is not straightforward. For a symmetric
prototype g, it is reasonable however to assume the center of gravity of the dual
window to coincide with |g|. This expectation is confirmed by the results we
obtain.



weight w?, w := % [-L/2,...,L/2 —1]. Compared to ¢!
minimization, this prior additionally penalizes values far from
the origin, inducing concentration. The proximity operator of
var(|x|) is a variation of the ¢' proximity operator and com-
puted by weighted soft thresholding. And example is shown in
Figure [{a)(b).

We also consider the variance of the energy of the signal:
var(|x|?), for symmetric windows equal to a weighted > norm
with linear weight w: var(x?) = |w - x|3. Explicit computation
of the proximity operator leads to

1
. (11)

PTOX,var(x2) (y) = m

i.e. multiplication with a function that decays quadratically
away from zero, see Figure @fc)(d).

A closely related concentration measure is smoothness in
frequency, as measured by the gradient of the Fourier transform
|IVF xH% Indeed, the resulting proximity operator has almost
the same form:

1

= m)’ (12)

PIOX, |y x|2 )

with ¢[l] = 2 — 2cos (). Since y[l] ~ CI* for small / and
values away from 0 are strongly attenuated, the priors var(|x|?)
and ||[VF x|3 often lead to similar results. Both functions in-
duce concentration by attenuation of values far from the origin.

Examples are shown in Figure Elke)(f).

Concentration in frequency is easily achieved through var(|# x

var(|F x|?) or |Vx|3. The respective proximity operators are
obtained simply by conjugating the proximity operators dis-
cussed above with the (inverse) Fourier transform. For exam-
ples, see Figure[3]
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b) Concentration in time and frequency: For simultaneous
concentration in time and frequency, we can consider jointly
the time- and frequency-domain variants of the priors discussed
above. Alternatively, we use a single cost functions providing
concentration in both domains at once. In TF literature, mod-

),ulation space norms, i.e. ¢7-norms on the short-time Fourier

coefficients are frequently used to measure joint TF localiza-
tion, see e.g. [4l [75]. In particular |x|s, = ||Gg1,rx]1, where
g is a Gaussian function, is considered as quality measure for
window functions. They are two different ways to motivate this
claim. First, the Sy-norm is an inverse measure of concen-
tration. It is limited by an uncertainty principle demonstrated
by Lieb in [76] and generalized to the discrete setting in [[77}
Proposition 2] and in [78, Theorem 3]. Hence, minimizing the
So-norm tends to reduce uncertainty and improve the overall
concentration. Second, the S o-norm prior is nothing but an ¢'-
norm prior on the time-frequency representation of x. Hence,
similar to the classical £'-prior, it is expected to promote func-
tions with few large values and a significant magnitude drop-off
outside of these values. However, we know that time-domain
concentration implies frequency-domain smoothness and vice-
versa. Therefore, we can assume that optimizing the S -norm
provides a function with good joint time-frequency concentra-
tion and smoothness. Again, similar to the £'-case, optimiz-
ing S o-norm alone does not not guarantee concentration around
the origin (or any single TF location). However, non-negligible
values around the origin are required for duality and thus, the
combination of the duality constraint and S g-norm optimization
provides dual windows with excellent localization around zero
in both domains, see Figure @a)(b).

Compared to the previously discussed priors, S o-norm op-
timization is considerably more expensive. Since we are not
aware of an explicit solution to the S, proximity operator, we




propose its computation via an iteration based on ADMM [[79].
The number of required ADMM steps per PPXA (parallel prox-
imal algorithm) iteration is low and scales well with L (usually
3-4 steps provided sufficient precision), but each substep re-
quires the computation of one full STFT and one inverse STFT,
with a complexity of O(L* log(L)) each.

In some cases, concentration can be further increased and
a desired trade-off between time- and frequency-concentration
can be established by a weighted S ¢-norm prior. The proxim-
ity operator is realized similar to the unweighted case. Fig-
ure[6fc)(d) shows an example using the circular weight

W[m,n] =1n (1 + w?[n] + w?[m]),

using the weight w as defined above. While other weights are
clearly feasible, the weight above has been tuned to yield good
results in our experiments and is also used for Exp. 1.
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¢) Other cost functions: The list of possible cost functions
is vast and full exploration of the possibilities of convex opti-
mization in window design is far beyond the scope of any single
contribution. As a rather academic example, we propose a free
design approach that selects the dual Gabor window closest to
the linear span of a model window g, i.e. we find

arg min || x — P<gvh>x\|§,
XECqual

where (g, is the linear span of gy,. The solution is computed
by a POCS (projection onto convex set) [80] algorithm. Due
to the examples academic nature, we were not concerned with
convergence time. Examples using a sine wave and a dirac
pulse as model window are presented in Figure [7(a)(b) and
(©d)d).

A note on implementation and complexity: Various methods
exist for solving the optimization problems formulated through-
out the paper, e.g. generalized forward backward [81]] or SDMM
[82]] [41], some of which might prove more efficient than PPXA
[42]] which we employ. However, optimizing computational
complexity is, for several reasons, not at the center of this con-
tribution. First, in contrast to continuously varying the analysis
window and transform parameters, a single (or few different),
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that the solution window (d) is actually composed of a smooth bump function
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predetermined transform configuration is usually used repeat-
edly, allowing for off-line computation of the dual window in
advance. Second, our main concern is the construction of pairs
of dual windows such that duality is satisfied independent of
the signal length L; by imposing support constraints, see Sec-
tion Therefore, the complexity depends mainly on the sup-
port size of the dual windows and not of the signal size L, see
Lemmal|I] Third, most of the applications use windows of size
smaller than 10* samples, where the implementation used pro-
vides quick convergence, except for the S(-norm prior, which
might require several minutes of computation time.

The complexity of the overall algorithm depends mostly on
the computation of the proximal operator of the selected priors.
Indeed, the most expensive prior operator is often the bottle-
neck of the optimization algorithm (whereas the choice of the
algorithm itself rather influences the total number of iterations).
For very large L, the algorithm will be limited by the projec-
tion onto the dual set satisfying the WR systems of equations
Gx = 6. The solution of the projection

arg min ||x — xo[3 s.t. Gx =6,
X

is given by
x=x9—G*(GG*)" (Gxy —6).

The projection itself has quadratic complexity, but the pseu-
doinverse of the matrix GG* has to be computed before the
start of the iteration process. This particular computation scales
with L?. Due the restricted use of very long windows, this is
no significant limitation. The complexity of the other proximal



Table 1: Summary of important priors

Function Effect on the signal Complexity

[l sparse representation in time L

[F x| sparse representation in frequency Llog(L)

[Vx|3 smoothen in time / concentrate in Llog(L)
frequency

[VF x| smoothen in frequency / concen- L
trate in time

[ x]ls0 Concentrate in both time and fre- L?log(L)
quency

[ x]3 spread values more evenly/ toward L
the canonical dual

var(|x|) Concentrate the signal in time

var(x?) Concentrate the signal in time

var (¥ x) Concentrate the signal in fre- Llog(L)
quency

var ((Fx)?) | Concentrate the signal in fre- Llog(L)
quency

ic(x) force x € C L*[L7]

operators is provided in Table [I] Among them, we do observe
that the optimization of the (weighted) S ¢-norm is much more
expensive. As a results, it might be preferable to optimize sepa-
rable time-frequency measures instead, leading to a complexity
of O(Llog(L)) instead of O(L?log(L)).

4. Numerical experiments

In the following sections, we present several experiments
regarding dual Gabor windows optimizing joint TF concentra-
tion. Such windows are well-suited both as analysis and synthe-
sis windows, reducing cross-component interference in the Ga-
bor coefficients or increasing the precision of processing oper-
ations, respectively. It is widely known that windows of Gaus-
sian type g(f) = e~ optimize a wide variety of concentration
measures, such as the Heisenberg uncertainty (product of vari-
ances), ||g|ls,/|g]2 and many more [83]]. The same can be said
about its discretized counterpart. However, Gaussian windows
are not compactly supported in either domain and any attempt
to make them so has a detrimental effect on their TF concen-
tration. Compact support in either domain generally introduces
infinite support and oscillation in the other, but low amplitude
values (in comparison to the desired processing precision) can
often be considered irrelevant. The concept of a good window
is subjective, depending not only on the application, but on the
user as well.

We now present 3 experiments where we compute various
optimal dual windows under different assumptions and restric-
tions. Exp. 1 provides a comparison of the effect of the con-
centration measures discussed in Sec.[3.I] when applied jointly

in time and frequency. Exp. 2 demonstrates, by tuning the op-
timization parameters, that the set of dual windows allows sur-
prising freedom when choosing the trade-off between time and
frequency concentration. In those two first experiments we im-
pose only a weak support constraint (i.e the support of the dual
is significantly longer than the support of the analysis window).
In contrast to the previous experiments, Exp. 3 considers a sit-
uation beyond the painless case, i.e. the canonical dual window
has long (possibly infinite) support. We construct a smooth dual
window A supported /,, the support set of g and compare our re-
sult to that provided by the truncation method.

Experiment 1 - Optimizing TF concentration: In this ex-
periment, we simultaneously optimize TF concentration with
regards to the previously introduced measures. This is either
achieved by a single prior on the TF representation of the dual
window & (|x|s,, [x[s,w). or by applying the time and fre-
quency versions of one prior, with equal weights (||Vx|3, var(|x|),
var(|x[?)), i.e.

argmin f(x) + f(Fx).

XECqual ﬁCsupp

The time step y of the algorithm has been tuned experimentally
for each prior, to yield good convergence speed and precision.
For this experiment, we have chosen a Tukey window with a
transition area ratiqﬂ of 3/5 (see Figure , with L, = 240, a =
50 and M = 300. The support of the dual window candidates
was restricted to L, = 600.
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Figure 8: The analysis Tukey window and its magnitude frequency response (in
dB).

Figure 9] shows time and frequency representations, as well
as the ambiguity functimﬂ of the results. We see Figure@ka)(b)(c)
that all the criteria provide (visually) nicely concentrated dual

The Tukey window with transition area ratio r € [0,1] is given by g(¢) = 1
forte [—(1—r)/2,(1 —r)/2], g(t) = 0.5 + 0.5cos(n(2t — r + 1)/2r) for
t e [-1/2,—(1 —r)/2], g(t) = 0.5+ 0.5cos(n(2t + r — 1)/2r) for t €
[(1 —r)/2,1/2] and zero else.

7In CL, the ambiguity function is the STFT of a function with regards to
itself: Gf,l’Lf.



Gabor windows, improved over the canonical dual. In par-
ticular, we see that the gradient and energy variance optimal
windows are very similar around the origin, whereas the latter
shows worse decay. The variance induces the best concentra-
tion of large values in an almost rectangular TF area, but similar
to the energy variance, no good decay is achieved. Both S and
weighted S priors perform very well, but the weight induces a
more symmetric TF concentration and slightly better decay.

Note that, while the shape of this experiment’s results is
quite characteristic, their quality cannot be representative for
any arbitrary setup. In fact the results are highly dependent on
the quality of the original Gabor frame, its redundancy and the
choice of support constraint. As expected, the optimization ef-
fect is smaller, the better the starting setup is. For additional
experiments with other starting windows and/or without sup-
port constraint, we refer to the webpage.

To further emphasize the similarities and differences be-
tween the window functions and to assess their quality, we com-
puted for all the results every concentration measure discussed
in Sec. 3.1} see Table[2] Besides demonstrating nicely that the
various solutions actually provide the best result in their respec-
tive criteria, the table underlines the similarity of gradient and
energy variance optimization. In total, except for the canonical
dual and S g-norm solution, all results are reasonably close. The
different shape of the Sy-norm solution is easily explained by
the fact that it is the only measure that does not penalize high-
energy contributions away from the origin. Furthermore, in Ta-
ble 3] the following classical measures for window quality are
presented: —3 dB width (time), main lobe width (frequency),
side lobe attenuation (frequency, in dB) and side lobe decay
(in dB). Please note that the lack of an underlying continuous
function for the dual windows prevents us from determining
the side lobe decay rate from the degree of smoothness of the
window. Therefore, as a rough approximation, we compute the
ratio between the largest sidelobe and the largest of the final 3
side lobes below the Nyquist frequency instead. Notably, the
variance optimization concentrates the main energy contribu-
tion in the smallest TF area as indicated in the third column,
while the gradient optimization provides arguably the most bal-
anced solution and the best decay properties, followed by the
considerably more expensive S and weighted S solutions.

Experiment 2 - Controlling the time-frequency trade-
off:

It is well known that no function can be arbitrarily concen-
trated in both the time and the frequency domain simultane-
ously. When choosing a dual window to a given Gabor frame
the concentration is further limited by the duality conditions,
the shape and the quality of the given frame. Oversimplified,
a badly conditioned Gabor frame (with large frame bound ratio
B/A), admits only badly concentrated duals. However, even if
the canonical dual window is well concentrated overall, appli-
cations might benefit from the improvement of time concentra-
tion versus frequency concentration and vice-versa. To see this,
just recall that the TF shape of the synthesis window limits the
precision of TF processing.

The following experiment demonstrates the surprising flex-
ibility that the set of dual windows allows when choosing the
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third the ambiguity function of the window. From top to bottom: canonical
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<o [y ) ar(i7) \/veli;gxm V. rlir B sy lsom Ly L2 Ll
Xan | 02074 32155 40.0898 03523  17.7331 1.1433 13883 14859 13638 1.8670 0.5422
xy | 0.6638 14988 82516 0.8612  8.2638 3.6602 14294 07527 19182 1.6855 1.1069
X | 07941 15037 42567 16165  8.2908 43791 15032 0.7163 2.0872 16718 12612
Xewar | 0.6662 14978 82108  0.9996  8.2580 36734 14310 07534 19213 1.6852 1.1096
X, | 02796 2.1551 18.1214 02434  11.8833 1.5418  1.2881 0.9455 14952 17094 0.6397
Xsow | 0.6498 15361 58810  0.8149  8.4695 35830 14092 0.6866 19418 1.6681 1.0987

Table 2: Time and frequency concentration measures for the solution dual windows (Exp. 1). Columns are the various criteria, rows indicate the different solutions
windows. Note that the criteria have been scaled with appropriate powers of 10 to improve readability of the table. Best results are indicated in bold.

—3dB-W ML-W 1/pr-W SL-A SL-D
Xean 27.5000  1.2292 295.8398 16.3689 106.0177
Xy 8.5000 39792 295.6575 31.5146 124.6016
Xyar 8.1667 4.0208 304.5363 26.6322  70.3673
Xenvar 8.5000 39792  295.6575 31.5040  76.8473
Xs, 16.1667  2.1042 293.9675 30.0840 109.6085
XS 8.8333 4.0208 281.5524 339670 120.2623

Table 3: Window quality measures for the solution dual windows. Rows in-
dicate the different solutions windows, columns are the various criteria (from
left to right): —3 dB width in time (in percent of Lj;), main lobe width in fre-
quency (in percent of the full frequency range) and the reciprocal value of their
product (providing a measure of joint TF concentration), side lobe attenuation
in frequency (in dB) and side lobe decay (in dB, measured as the amplitude dif-
ference of the maximum sidelobe and the largest of the 3 final side lobes below
the Nyquist frequency). Best results are indicated in bold.

appropriate TF concentration trade-off. The system parameters
are the same as in Exp. 1: Ly, = 240, a = 50, M = 300 and dual
window support less or equal to L, = 600. However, to provide
a more diverse set of examples, we exchanged the Tukey win-
dow for an Itersine window. Based on the good results in Exp.
1, we selected the time and frequency gradient priors to control
the TF spread and optimize

argmin A, |VFx|2 + A Vx|

XECquat " Csupp

for varying 1,1, € R*, therefore balancing both concentra-
tion measures against one another. Recall that | VF x|? leads to
concentration in time, while V|3 promotes concentration in
frequency.

The results, presented in Figure[I0]and Table[d] demonstrate
the large amount of freedom when choosing the TF concentra-
tion trade-off. It also shows that extreme demands on either
time or frequency concentration come at the cost of other prop-
erties. In this particular example, time concentration comes at
the cost of worse sidelobe attenuation, while strong demands
on frequency concentration inhibit quick frequency decay. De-
spite this, all four solution windows behave as expected and
show reasonable to very good overall TF concentration.
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—3dB-W ML-W  1/p-W  SL-A SL-D
X0 | 81667 39375 621.9631 257860  153.8656
Xs/1 9.8333  4.0208 505.8400 45.0251 161.5928
Xioo | 18.5000 23125 467.4945 667578  103.8376
Xioooyn | 281667 1.4792  480.0400 46.6063  71.2169

Vs, [Vl

10% 104

Xy | 07887 1.5032

xsp | 05005 17009

Xio | 0.2365  2.6391

X | 0.1545  4.1818

Table 4: Window quality measures and prior values for the solution windows
of the TF trade-off experiment. The subscript refers to the ratio 1; /A, of regu-
larization parameters.

Experiment 3 - Smooth dual windows with short sup-
port: So far, we have only considered weak support constraints,
therefore allowing for a wide variety of dual window choices.
Sometimes a stricter constraint is desired, e.g. to reduce delay
in real-time application or to minimize the required number of
multiplication operations. Also, for fixed redundancy, reducing
the time step and the number of frequency channels is compu-
tationally cheaper than an increase of the number of frequency
channels (amounting to a longer FFT length). Therefore, we
consider a non-painless setup, i.e. a system with few frequency
channels: M < L.

The construction of dual Gabor windows with short support
has been attempted previously, e.g. by the truncation method
in [36]], cf. Section 3] However, the solutions obtained, are
often badly localized in frequency. This is a result of the trun-
cation method yielding to nonsmooth solutions, i.e. solutions
with “jumps” (discontinuity-like behavior) in time. By solv-
ing the optimization problem Equation (I0) with suitably cho-
sen priors f;, better results can be obtained, showing reasonable
smoothness and therefore frequency concentration.

We start from a Gabor system G(g, 30, 60) with redundancy
2. The analysis window g is chosen as a Nuttall window of
length L, = 120 samplesﬂ

We desire a dual window % with the same support as g,
ie. L, = L, = 120. Furthermore, we aim to achieve local-
ization and smoothness by selecting the priors fi = || - |1,/ =
[F ()i, f = V()2 and fy = |VF(-)|3. Here, fs, fu have
been chosen to induce smoothness and localization, while fi, f>
have been added to improve the shape of the window, in partic-

8The Nuttall window [33] is a compactly supported 4-term window of the
form y[_05,0.5) 213(:0 ¢k cos(2kn-), with ¢g = 0.355768, ¢| = 0.487396, c; =
0.144232 and ¢3 = 0.012604. It has very good side lobe attenuation and decay
properties, but is less popular than the wide-spread Hann and Blackman win-
dows. However, out of those three windows, it best approximates the Gaussian
and optimizes all the joint TF concentration measures discussed in Sec.[3.T](see
webpage).
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ular they serve as a counter to the solution’s tendency to have
multiple peaks. This is unwanted as it leads to windows with
ambiguous temporal or frequency position. Heuristically, min-
imizing the /'-norm pushes all big coefficients to similar val-
ues, therefore achieving the suppression of multiple significant
peaks.

The results in Figure [ITc)(d) show the optimal dual win-
dow with regards to the regularization parameters 4; = A, =
0.001 and A3 = A4 = 1, chosen experimentally to provide a
good result. As reference, we included the least-squares solu-
tion provided by the truncation method, see Figure e)(f). At
closer examination, we see that the improved sidelobe decay of
the optimized dual window comes at the cost of 5 dB of side

lobe attenuation, compared to the least squares solution, cf. Ta-
ble

@ - (b)
1 z 0
3
c
o
3
05 o -50
[0}
E
0 g A\
T . n §_100 iTnv.ve. R .
-100 0 100 0 0.1 02 03 04
Time (in samples) Frequency (normalized)
-3 C d
10 © - @
h=2
15 é 20
10 g -40
I
o -60
° E
. g -80
£ -100
-100 0 100 =" 01 02 03 o04
Time (in samples) Frequency (normalized)
-3 e f
10 © 2 ®
15 b
% -20
10 g -40
o
-60
5 [0}
E
. £ -80
£ -100
-100 0 100 0 0.1 02 03 04

Time (in samples) Frequency (normalized)

Figure 11: Experiments. (a)(b) Analysis window in time and frequency. (c)(d)
Optimized synthesis window in time and frequency. (e)(f) Truncation method
result in time and frequency.

—3dB-W ML-W 1/pr-W SL-A SL-D
Xirune 34.1667 4.6875 124.8780 24.6729 20.3697
Xopt 29.1667 5.7292  119.6883 19.4349  69.4470
e L O
Xeune | 0.6156  2.8254 09092 0.6774
Xopt 0.5579 23705 0.9278 0.6188

Table 5: Window quality measures and prior values for the solution windows of
the non painless experiment. The subscript *opt’ refers to optimization method
and the subscript "trunc’ to truncation method.

In the setup above, the canonical dual window would have



very long, quite possibly infinite support. To guarantee com-
pact support on L, = L, for the canonical dual, going to the
painless case would increase the number of frequency channels
to M > 120 and increase the redundancy twofold, the latter
being an unwanted side effect. Alternatively, we could decide
to keep the parameters a = 30, M = 60 fixed, but decrease the
window size to L, < 60 for a painless case setup. However, this
construction provides a system with a more than 8 times larger
frame bound ratio. Consequently, the resulting canonical dual
window, shown in Figure [12] shows bad frequency behavior
and multiple significant peaks in time. In contrast, the method
proposed in this manuscript allows the construction of nicely
shaped, compactly supported dual Gabor windows at low re-
dundancies, without the strong restrictions of the painless case.
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Figure 12: Half-overlap painless case construction (G(g, 30, 60), Ly, = 60):
Canonical dual window in time (a) and in frequency (b).

Excursion - Improvement of classical tight frame con-
structions:

Sometime significant simplifications of applications or al-
gorithms are achieved, whenever tight frames are used, e.g. the
SALSA algorithm for ¢! regularized least-squares [84]. Instead
of computing the dual window to a previously selected analysis
window, we now attempt the computation of a Gabor Parseval
frameﬂ with good properties, given the parameters a, M. A sys-
tem G(h, a, M) is a Parseval frame, if it is a dual frame to itself.
We consider only Parseval frames, since every tight frame is
Parseval up to a scaling factor. The Gabor Parseval windows h
for parameters a, M are characterized by the nonlinear equation
system

% <h, h[- — nM]ez’”m'/“> = 6[n]o[m],

obtained by setting g = h in the WR equations (8). The so-
lution set associated to this equation system is not convex. In-
deed, little is known about the set beyond it being pathwise con-
nected [853] subset of {h € £>(Z) : || = a/M}. Even worse,
since we only consider real-valued solution windows, the con-
nectedness property might be violated. Although no conver-
gence guarantees can be given, we will provide a heuristic op-
timization scheme that provided good experimental results.

In order to implement our proposed scheme, we need a
method to compute the projection onto the set of Parseval win-
dows:

Pep,, (y) = arg min |x — yl5.
XECpars

9 A Parseval frame is a tight frame with frame bound 1.

It can be shown [86]] that this projection can be computed via
the formula

P, (y) = S, 4 ho- (13)

where S, , v = G _,,Gyqum is the frame operator with respect

;k*,a,M
to G(y,a, M), cf. [86]. The result of S‘_alﬁy is called the canoni-
cal tight window and efficient algorithms for its computation are
freely available, e.g. in the LTFAT toolbox [72], see also [87].
The canonical tight window always forms a Parseval frame.

We attempt to solve the tight problem with PPXA, simply
replacing the projection on the dual set by projection onto the
set of Parseval windows. At convergence, a final projection
onto the tight set ensures the tightness property of the result.
If a support constraint is desired, the final projection is based
on a POCS-based algorithm. However, there is no convergence
guarantee of this final step, even if Cpys and Cyypp are not dis-
joint. We have no theoretical guarantee to find a good solu-
tion to the problem with this method, since both the PPXA
and POCS steps lack a convergence guarantee. Nevertheless,
our approach is not blindly random. PPXA is a generalization
of the Douglas-Rachford algorithm [42]]. The latter algorithm,
when applied to non-convex, lower, semi-continuous functions
has been proved to converge to a stationary point, one conse-
quence of a more general minimization scheme presented by
Attouch et al. [88]]. Unfortunately, the indicator function of the
set of real-valued Parseval windows is most likely not semi-
continuous and therefore not subject to Attouch’s result.

Since the problem is not convex, good starting value and
timestep choices are crucial. We have obtained good results
and dependable convergence when choosing a starting window
that is not too far from what we aim for, i.e. it already has a
good frame bound ratio B/A for the Gabor parameters a, M and
shows the properties we wish to promote in the tight window,
e.g. TF concentration. Note that, especially for frames with
small redundancy, it has been observed that a trade-off between
localization and smoothness in TF exists between the analysis
and dual windows. Therefore, low redundancy Parseval frame
windows provide, in comparison, suboptimal TF concentration.

As starting setup, we choose a Gabor system G(g, 30, 60)
with an Itersine window of length L, = 60. For this half-
overlap, redundancy 2 situation, the Itersine window forms a
tight, painless frame with better joint TF concentration than
other widely used constructions for redundancy 2 tight frames,
such as the cosine window x[_o.s5,0.5] cos(-) or rectangular win-
dow x[_0505]- We now attempt the construction of a Gabor
Parseval frame with redundancy 2, using a window function
that further improves the TF concentration of the Itersine win-
dow.

To gain some design freedom, we allow the tight window g,
to have support length L, < 360. As in the earlier experiments,
gradient priors are used to promote a window that is smooth
and well-localized in both domains, leading (formally) to the
optimization problem

argmin A, |[VFx[3 + 2| V|3

XECpars mCsupp
For easier comparison, we tuned the result to have roughly the
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same visual concentration in time. The result shown was ob-
tained for the regularization parameters 4; = 1, 4, = 5 and
shows improved decay and side lobe attenuation, when com-
pared to the Itersine, see Figure[I3]and Table[6]
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Figure 13: G(g,30,60), L, = 60, compactly supported tight windows: L
360: Itersine (gray). Result of optimization (black).

—3dB-W ML-W  1/p-W  SL-A SL-D
X | 102778 55449 1754726 20.5885  78.1983
Xop | 102778 54167 179.6258 26.1916 126.9964

19xl2 Iv7xla

100 100

Xier | 4.1096  5.5811

Xop | 35207 6.0137

Table 6: Window quality measures and gradient criteria for the tight window
experiment. The subscript indicates the window: Xjier: Itersine window, xop:
Optimized tight window. Best values indicated in bold.

Although the heuristic tight frame optimization has pro-
vided promising results, there is no guarantee for the results’
optimality. Whenever the tight frame property is not essential,
the construction of a pair of dual frames with good TF concen-
tration might be preferable. For the same parameters as before,
we choose a Nuttall window of length L, = 120 to construct a
frame. This window is slightly broader in time than the Itersine
window used before, but provides very good decay and con-
centration in frequency, see Figure [I4 For the dual window,
we consider L, < 360 as in the tight case and the optimization
problem

arg min 4, |VFx]3 + 42| V3.
XECqual M Cupp

Again, the regularization parameters have been tuned to pro-
vide similar concentration in time. The dual window shown
in Figure was obtained for the regularization parameters
A1 = 0.1, 2, = 1. Both the Nuttall window and its optimized
dual show improved joint TF concentration over the tight Iter-
sine window, see also Table In terms of joint TF localization,
the values presented in Table [f] and Table [7] suggest that all 3
prototypes constructed in this excursion show a considerable
improvement upon the Itersine window and consequently over
other widely used redundancy 2 tight Gabor frame construc-
tions.
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Figure 14: Construction of a pair of dual FIR windows both improving Itersine
TF concentration (G(g, 30, 60), Nuttall L, = 120 (gray), Itersine L, = 60
(gray dotted), Dual window L, = 120 (black)): Left: Windows in time. Right:
Windows in frequency.

—~3dB-W ML-W  1/pr-W  SL-A  SL-D
Xier | 102778 55093 176.6069 20.5903 78.1948
Xour | 113889 67130 130.7990 93.3292  55.7800
Xop | 11.9444 47685 1755701 26.0021 91.1066

[Vl 97

100 100

Xier | 43278 8.4892

Xt | 3.1292 105630

Xop | 3.0412  9.1353

Table 7: Window quality measures and gradient criteria for the tight window
experiment. The subscript indicates the window: Xie,: Itersine window, xpue:
Nuttall window, xqya1: Optimized dual window. Best values indicated in bold.
Minor differences to Table VI are due to different assumed length L. They
amount to either sampling issues (ML-W) or a scaling factor (||VF x|2).

5. Conclusion

In this contribution, we have proposed a convex optimiza-
tion framework for the computation of optimized Gabor dual
windows. The presented method is based on the observation
that the set of dual windows for a fixed Gabor filterbank can
be described as the solution set to the linear Wexler-Raz equa-
tions. Furthermore, we exploit the facts that support constraints
can be expressed as linear equations and that compactly sup-
ported Gabor windows are dual independent of the underlying
signal length.

The resulting scheme enables the computation of alterna-
tive dual windows, with the possibility to optimize a wide va-
riety of criteria, freely chosen by the user. Although the com-
plexity varies with the selected priors, results are usually ob-
tained efficiently using the provided open-source implemen-
tation, supplied on the associated webpage https://1ts2.
epfl.ch/rrp/gdwuco/.

We provided several demonstrations of the method’s capa-
bility in the context of joint time-frequency concentration opti-
mization. In particular, we constructed dual windows that con-
siderably improve time-frequency concentration over the widely
used canonical dual, windows that provide alternative ratios be-
tween time and frequency concentration and windows that com-
bine short support, smoothness and frequency concentration.


https://lts2.epfl.ch/rrp/gdwuco/
https://lts2.epfl.ch/rrp/gdwuco/

Finally, we showed that we can, heuristically, apply the pro-
posed framework to compute well-concentrated tight windows,
improving previously known explicit tight frame constructions.
The results show that our method can be applied in various
situations to construct dual frames with properties more rele-
vant for application than minimal £>-norm.
Future work will concern the extension of the presented

scheme to more general systems, e.g. Gabor systems with complex-

valued window on nonseparable sampling sets [89] and nonsta-
tionary Gabor frames [90].
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