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Abstract
Time-frequency (TF) representations provide
powerful and intuitive features for the analysis
of time series such as audio. But still, generative
modeling of audio in the TF domain is a sub-
tle matter. Consequently, neural audio synthesis
widely relies on directly modeling the waveform
and previous attempts at unconditionally synthe-
sizing audio from neurally generated invertible
TF features still struggle to produce audio at sat-
isfying quality. In this article, focusing on the
short-time Fourier transform, we discuss the chal-
lenges that arise in audio synthesis based on gen-
erated invertible TF features and how to overcome
them. We demonstrate the potential of deliberate
generative TF modeling by training a generative
adversarial network (GAN) on short-time Fourier
features. We show that by applying our guidelines,
our TF-based network was able to outperform a
state-of-the-art GAN generating waveforms di-
rectly, despite the similar architecture in the two
networks.

1. Introduction
Despite the recent advance in machine learning and gener-
ative modeling, synthesis of natural sounds by neural net-
works remains a challenge. Recent solutions rely on, among
others, classic recurrent neural networks (e.g., SampleRNN,
Mehri et al., 2017), dilated convolutions (e.g., WaveNet,
Van Den Oord et al., 2016), and generative adversarial net-
works (e.g., WaveGAN, Donahue et al., 2019). Especially,
the latter offers a promising approach in terms of flexibility
and quality. Generative adversarial networks (GANs, Good-
fellow et al., 2014) rely on two competing neural networks
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trained simultaneously in a two-player min-max game: The
generator produces new data from samples of a random
variable; The discriminator attempts to distinguish between
these generated and real data. During the training, the gen-
erator’s objective is to fool the discriminator, while the
discriminator attempts to learn to better classify real and
generated (fake) data. Since their introduction, GANs have
been improved in various ways (e.g., Arjovsky et al., 2017;
Gulrajani et al., 2017). For images, GANs have been used
to great success (Karras et al., 2018; Brock et al., 2019). For
audio, GANs enable the generation of a signal at once even
for durations in the range of seconds (Donahue et al., 2019).

The neural generation of realistic audio remains a challenge,
because of its complex structure, with dependencies on vari-
ous temporal scales. In order to address this issue, a network
generating audio is often complemented with another neu-
ral network or prior information. For example, the former
may require a system of two parallel neural networks (Van
Den Oord et al., 2018), leading overall to more complex
systems, while the latter can take the form of a separate
conditioning of networks (Shen et al., 2018; Sotelo et al.,
2017; Engel et al., 2017). It is usually beneficial to train
neural networks on a high-level representation of sound,
instead on the time-domain samples. For example, Tacotron
2 (Shen et al., 2018) relies on non-invertible mel-frequency
spectrograms. Generation of a time-domain signal from the
mel coefficients is then achieved by training a conditioned
WaveNet to act as a vocoder.

Time-frequency (TF) domain representations of sound are
successfully used in many applications and rely on well-
understood theoretical foundations. They have been widely
applied to neural networks, e.g., for solving discriminative
tasks, in which they outperform networks directly trained on
the waveform (Dieleman & Schrauwen, 2014; Pons et al.,
2017). Further, TF representations are used to parameter-
ize neural synthesizers, e.g., Tacotron 2 mentioned above
or Timbretron (Huang et al., 2019), which modifies timbre
by remapping constant-Q TF coefficients of sound, condi-
tioning a WaveNet synthesizer. Despite the success of TF
representations for sound analysis, why, one could ask, has
neural sound generation via invertible TF representations
only seen limited success?
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In fact, there are neural networks generating invertible TF
representations for sound synthesis. They were designed to
perform a specific task such as source separation (Fan et al.,
2018; Muth et al., 2018), speech enhancement (Pascual et al.,
2017), or audio inpainting (Marafioti et al., 2018) and use a
specific and well-chosen setup for TF processing. While the
general rules for the parameter choice are not the main focus
of those contributions, these rules are highly relevant when
it comes to synthesizing sound from a set of TF coefficients
generated, e.g., by a neural network.

When both the TF representation and its parameters are
appropriately chosen, we generate a highly structured, in-
vertible representation of sound, from which time-domain
audio can be obtained using efficient, content-independent
reconstruction algorithms. In that case, we do not need to
train a problem-specific neural synthesizer. Hence, in this
article, we discuss important aspects of neural generation
of TF representations particularly for sound synthesis. We
focus on the short-time Fourier transform (STFT, e.g., Allen,
1977; Wexler & Raz, 1990), the best understood and widely
used TF representation in the field of audio processing. First,
we revisit some properties of the continuous STFT (Port-
noff, 1976; Auger et al., 2012; Gröchenig, 2001) and the
progress in phaseless reconstruction of audio signals from
STFT coefficients (Průša et al., 2017). Then, we discuss
these properties in the context of the discrete STFT in order
to compile guidelines for the choice of STFT parameters en-
suring the reliability of sound synthesis and to provide tools
monitoring the training progress of the generative models.
For the latter, we introduce a novel, experimental measure
for the consistency of the STFT. Eventually, we demonstrate
the applicability of our guidelines by introducing TiFGAN,
a network which generates audio using a TF representa-
tion. We provide perceptual and numerical evaluations of
TiFGAN demonstrating improved audio quality compared
to a state-of-the-art GAN for audio synthesis1. Our soft-
ware, complemented by instructive examples, is available at
http://tifgan.github.io.

2. Properties of the STFT
The rich structure of the STFT is particularly apparent in
the continuous setting of square-integrable functions, i.e.
functions in L2(R). Thus, we first discuss the core issues
that arise in the generation of STFTs within that setting,
recalling established theory along the way, and then move
to discuss these issues in the setting of discrete STFTs.

1During the preparation of this manuscript, the work (Engel
et al., 2019) became publicly available. In addition to well chosen
STFT parameters, usage of the time-direction phase derivative
enabled their model, GANSynth, to produce significantly better
results than previous methods. The authors kindly provided us with
details of their implementation, enabling a preliminary discussion
of similarities and differences to our guidelines.

2.1. The continuous STFT

The STFT of the function f ∈ L2(R) with respect to the
window ϕ ∈ L2(R) is given by

Vϕ f(x, ω) =

∫
R
f(t)ϕ(t− x)e−2πiωt dt (1)

The variable (x, ω) ∈ R2 indicates that Vϕ f(x, ω) de-
scribes the time-frequency content of f at time x and fre-
quency ω. The STFT is complex-valued and can be rewrit-
ten in terms of two real-valued functions as Vϕ f(x, ω) =
exp(Mϕ(x, ω) + iφϕ(x, ω)), whenever Vϕ f(x, ω) 6= 0.
The logarithmic magnitude (log-magnitude) Mϕ is uniquely
defined, but the phase φϕ is only defined modulo 2π. Fur-
ther, while Mϕ is a smooth, slowly varying function, φϕ
may vary rapidly and is significantly harder to model accu-
rately. Nonetheless, both functions are intimately related.
If ϕ(t) = ϕλ(t) := e−πt

2/λ is a Gaussian window, this
relation can be made explicit (Portnoff, 1976; Auger et al.,
2012) through the phase-magnitude relations

∂φϕλ
∂x (x, ω) = λ−1

∂Mϕλ
∂ω (x, ω),

∂φϕλ
∂ω (x, ω) = −λ∂Mϕλ

∂x (x, ω)− 2πx,
(2)

where ∂
∂• denotes partial derivatives with respect to •.

Hence, as long as we avoid zeros of Vϕ f , the phase φϕλ
can be recovered from Mϕλ up to a global constant. Since
the STFT is invertible, we can recover f from Mϕλ up to a
global phase factor as well, such that it is sufficient to model
only the magnitude Mϕλ .

Note that the partial phase derivatives are of interest by
themselves. In contrast to the phase itself, they provide an
intuitive interpretation as local instantaneous frequency and
time and are useful in various applications (Dolson, 1986;
Auger & Flandrin, 1995). Further, as suggested by (2),
the phase derivatives might be a more promising modeling
target than the phase itself, at least after unwrapping and
demodulation2 as detailed in (Arfib et al., 2011).

Note that not every function F ∈ L2(R2) is the STFT of
a time-domain signal because the STFT operator Vϕ maps
L2(R) to a strict subspace of L2(R2). Formally, assuming
that the window ϕ has unit norm, the inverse STFT is given
by the adjoint operator V∗ϕ of Vϕ and we have V∗ϕ(Vϕ f) =
f for all f . Now, if F ∈ L2(R2) is not in the range of
Vϕ, then f = V∗ϕ F is a valid time-domain signal, but
F 6= Vϕ f , i.e., F is an inconsistent representation of f ,
and the TF structure of F will be distorted in Vϕ f .

In the presence of phase information, consistency of F
can be evaluated simply by computing the norm difference
‖F − Vϕ(V

∗
ϕ F )‖ which can also serve as part of a train-

ing objective. If only magnitudes M̃ are available, we can

2Formally, demodulation is simply adding 2πx to
∂φϕλ
∂ω

(x, ω).

http://tifgan.github.io
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Figure 1. Signal representations. Top row: waveform of a test signal (pure tone and pulses). Bottom row: STFT features: log magnitudes
(left), time-direction phase derivatives (center) and frequency-direction phase derivatives (right). For small log magnitude, phase
derivatives were set to zero. Frequency-direction derivative was computed after demodulation.

theoretically exploit the phase-magnitude relations (2), re-
construct the phase, and then evaluate consistency. Unless
otherwise specified, coefficients that are not necessarily con-
sistent are indicated by the symbol∼, e.g., generated magni-
tudes M̃. In practice, phase recovery from the magnitude M̃
introduces errors of its own and the combined process may
become too expensive to be attractive as a training objective.
Thus, it might be preferable to evaluate consistency of the
generated magnitude directly, which, for Gaussian windows,
can be derived from (2)(

λ ∂2

∂x2 + λ−1 ∂2

∂ω2

)
Mϕλ(x, ω) = −2π. (3)

Note that, although (Portnoff, 1976) already observed that
M̃ is an STFT magnitude if and only if (3) holds (and eM̃

is square-integrable), our contribution is, to our knowl-
edge, the first to exploit this relation to evaluate consis-
tency. Furthermore, the phase-magnitude relations (2) and
the consistency equivalence (3) can be traced back to the
relation of Gaussian STFTs to a certain space of analytic
functions (Bargmann, 1961; Conway, 1973).

In the context of neural networks, the ultimate goal of
the generation process is to obtain a time-domain signal,
but we can only generate a finite number of STFT co-
efficients. Therefore, it is essential that inversion from
the generated values is possible and synthesis of the time-
domain signal is robust to distortions. In mathematical
terms, this requires a window function ϕ and time and fre-
quency steps a, b ∈ R+ specifying a snug STFT (or Ga-
bor) frame (Christensen, 2016). While a comprehensive
discussion of STFT frames is beyond the scope of this ar-
ticle, it is generally advisable to match a, b to the width
of ϕ and its Fourier transform ϕ̂. In the case where both
ϕ and ϕ̂ are at least remotely bell-shaped, a straightfor-
ward measure of their widths are the standard deviations
σϕ = σ(ϕ/‖ϕ‖L1) and σϕ̂ = σ(ϕ̂/‖ϕ̂‖L1). Hence, we ex-
pect good results if a/b = σϕ/σϕ̂. For Gaussian windows
ϕλ, we have σϕλ/σϕ̂λ = λ, such that λ is often referred to

as time-frequency ratio. For such ϕλ, the choice a/b = λ is
conjectured to be optimal3 in general (Strohmer & Beaver,
2003), and proven to be so for (ab)−1 ∈ N (Faulhuber &
Steinerberger, 2017). Furthermore, the relations (2) and
(3) only hold exactly for the undecimated STFT and must
be approximated. For this approximation to be reliable, ab
must be small enough. The theory suggests that ab ≤ 1/4
is generally required for reliable reconstruction of signals
from the magnitude alone (Balan et al., 2006). For larger
ab, the values of the STFT become increasingly independent
and little exploitable (or learnable) structure remains.

These considerations provide useful guidelines for the
choice of STFT parameters. In the following, we translate
them into a discrete implementation.

2.2. The discrete STFT

The STFT of a finite, real signal s ∈ RL, with the analysis
window g ∈ RL, time step a ∈ N and M ∈ N frequency
channels is given by

Sg(s)[m,n] =
∑
l∈L

s[l]g[l − na]e−2πiml/M , (4)

for n ∈ N,m ∈ M , where we denote, for any j ∈ N, j =
[0, . . . , j − 1] and indices are to be understood modulo L.
Similar to the continuous case, we can write Sg(s)[m,n] =
exp(Mg[m,n] + iφg[m,n]), with log-magnitude Mg and
phase φg. The vectors Sg(s)[·, n] ∈ CN and Sg(s)[m, ·] ∈
CM are called the n-th (time) segment andm-th (frequency)
channel of the STFT, respectively.

Let b = L/M . Then, the ratio M/a = L/(ab) is a measure
of the transform redundancy and the STFT is overcomplete
(or redundant) if M/a > 1. If s and g are real-valued, all
time segments are conjugate symmetric and it is sufficient
to store the first MR = bM/2c channels only, such that the

3In the sense of the frame bound ratio, which is a measure of
transform stability (Christensen, 2016).
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Figure 2. Overview of spectral changes resulting from different
phase reconstruction methods. (1) Original log-magnitude, (2-4)
log-magnitude differences between original and signals restored
with (2) cumulative sum along channels (initialized with zeros),
(3) PGHI from phase derivatives (4) PGHI from magnitude only
and phase estimated from Eq. (5).

STFT matrix can be reduced to the size MR ×N .

The inverse STFT with respect to the synthesis
window g̃ ∈ RL can be written as s̃[l] =∑
n∈N

∑
m∈M Sg(s)[m,n]g̃[l − na]e2πiml/M , l ∈ L. We

say that g̃ is a dual window for g, if s̃ = s for all s ∈ RL
(Strohmer, 1998; Janssen, 1997; Wexler & Raz, 1990).

Note that the number of channels M can be smaller than
the number of nonzero samples Lg of g, as long as a and
M respect the widths of g and its Fourier transform ĝ as
discussed in Sec. 2.1. This yields aM ≈ Lσgσĝ as a general
guideline with σg = σ(g/‖g‖`1) and σĝ = σ(ĝ/‖ĝ‖`1).
Furthermore, with the redundancy M/a ≥ 4, there is suf-
ficient dependency between the values of the STFT, e.g.,
to facilitate magnitude-only reconstruction. In our experi-
ence, this choice represents a lower bound for reliability of
discrete approximation of (2).

! Implementations of STFT in SciPy and Tensorflow in-
troduce a phase skew dependent on the (stored) window
length Lg (usually Lg � L) and with severe effects on
any phase analysis and processing if not accounted for.
This can be addressed with the conversion between (4)
and other conventions presented in the supplementary
material ?? and (Arfib et al., 2011; Pruša, 2015).

2.3. Phase recovery and the phase-magnitude
relationship

Let ∂• denote some discrete partial differentiation scheme.
Discrete approximation of the phase-magnitude relationship
(2) results in

∂nφg[m,n] ≈
aM

λ
∂mMg[m,n],

∂mφg[m,n] ≈ −
λ

aM
∂nMg[m,n]− 2πna/M,

(5)

as derived in (Průša et al., 2017). For non-Gaussian windows
g, choosing λ = σg/σĝ has shown surprisingly reliable
results, but accuracy of (5) depends on the proximity of
the window g to a Gaussian nonetheless. Optimal results
are obtained for Gaussian windows at redundancy M/a =
L. While STFTs with M/a = 4 perform decently and
are considered in our network architecture. In Section 3
we show that a further, moderate increase in redundancy
has the potential to further elevate synthesis quality. As
an alternative to estimating the phase derivatives from the
magnitude, it may be feasible to generate estimates of the
phase derivative directly within a generative model.

It may seem straightforward to restore the phase from its
time-direction derivative by summation along frequency
channels as proposed in (Engel et al., 2019). Even on real,
unmodified STFTs, the resulting phase misalignment intro-
duces cancellation between frequency bands resulting in
energy loss, see Fig. 2(2) for a simple example. In prac-
tice, such cancellations often leads to clearly perceptible
changes of timbre4. Moreover, in areas of small STFT mag-
nitude, the phase is known to be unreliable (Balazs et al.,
2016) and sensitive to distortions (Alaifari & Wellershoff,
2019; Alaifari & Grohs, 2017; Mallat & Waldspurger, 2015),
such that it cannot be reliably modelled and synthesis from
generated phase derivatives is likely to introduce more dis-
tortion. Phase-gradient heap integration (PGHI, Průša et al.,
2017) relies on the phase-magnitude relations (5) and by-
passes phase instabilities by avoiding integration through
areas of small magnitude, leading to significantly better and
more robust phase estimates φ̃, see Fig. 2(4). PGHI often
outperforms more expensive, iterative schemes relying on
alternate projection, e.g., Griffin-Lim (Griffin & Lim, 1984;
Le Roux et al., 2010; Perraudin et al., 2013), at the phaseless
reconstruction (PLR) task. Generally, PLR relies heavily
on consistent STFT magnitude for good results. Note that
the integration step in PGHI can also be applied if phase
derivative estimates from some other source are available,
e.g., when training a network to learn time- and frequency-
direction phase derivatives. For an example, see Fig. 2(3).

2.4. Consistency of the STFT

The space of valid STFTs with a given window is a lower
dimensional subspace of all complex-valued matrices of
size MR ×N and a given, generated matrix S̃ may be very
far from the STFT of any time-domain signal, even if it
looks correct. To prevent artifacts, it is important to ensure
that S̃ is consistent. Let iSg̃ denote the inverse STFT with
the dual window g̃, see Sec. 2.2. Consistency of S̃ can be
evaluated by computing the projection error

eproj = ‖S̃− Sg(iSg̃(S̃))‖, (6)

4See http://tifgan.github.io for examples.

http://tifgan.github.io
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where ‖ · ‖ denotes the Euclidean norm. When eproj is large,
its effects on the synthesized signal are unpredictable and de-
graded synthesis quality must be expected. Although eproj is
an accurate consistency measure, it can be computationally
expensive. Further, its use for evaluating the consistency of
magnitude-only data is limited: When preceded by phase
recovery, eproj is unable to distinguish the error introduced
by the employed PLR method from inconsistency of the
provided magnitude data.

As an alternative, we instead propose an experimental mea-
sure that evaluates consistency of the log-magnitude directly.
The proposed consistency measure exploits the consistency
relation (3). An approximation in the spirit of (5) yields

λ

a2
∂2nMg[m,n] +

M2

λ
∂2mMg[m,n] ≈ −2π. (7)

In practice, and in particular at moderate redundancy, we
found (7) to be prone to approximation errors. Experimen-
tally, however, a measure inspired by the sample Pearson
correlation (Lyons, 1991) provided promising results. Let
M̃ be the generated magnitude, we have

DMn = |∂2nM̃ + πa2

λ |, DMm = |∂2mM̃ + πλ
M2 |, (8)

where the terms πa2/λ and πλ/M2 are obtained by dis-
tributing the shift 2π in (7) equally to both terms on the left
hand side. We define the consistency %(M̃) of M̃ as

%(M̃) := r(DMn,DMm), (9)

where r(X,Y ) is the sample Pearson correlation coefficient
of the paired sets of samples (X,Y ). If the equality is satis-
fied in (7), then %(M̃) = 1. Conversely if %(M̃) ≈ 0, then
(7) is surely violated and the representation is inconsistent.
The performance of % as consistency measure is discussed
in Section 3 below.

3. Performance of the consistency measure
The purpose of the consistency measure % is to determine
whether a generated log-magnitude is likely to be close to
the log-magnitude STFT of a signal, i.e. it is consistent. As
discussed above, consistency is crucial to prevent degraded
synthesis quality. Hence, it is important to evaluate the
dependence of its properties on changes in the redundancy,
the window function and its sensitivity to distortion.

In a first test, we compute the mean and standard deviation
of % on a speech and a music dataset, see Section 4 for
details, at various redundancies, using Gaussian and Hann
windows with time-frequency ratio λ ≈ 4 and STFT pa-
rameters satisfying aM/L = 4, see Fig. 3. We note that
a Gaussian random matrix takes surprisingly high values
for % and, thus, % is not reliable below redundancy 4. For
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Figure 3. Consistency as function of the redundancy for various
time-domain windows. Random matrix from Gaussian distribu-
tion.

Gaussian windows, mean consistency increases with redun-
dancy, while the standard deviation decreases, indicating
that % becomes increasingly reliable and insensitive to signal
content. This analysis suggests that a redundancy of 8 or 16
could lead to notable improvements. At redundancy 4, spec-
trograms for both types of data score reliably better than the
random case, with speech scoring higher than music. The
Hann window scores worse than the Gaussian on average in
all conditions, with a drop in performance aboveM/a = 16.
This indicates that % is only suitable to evaluate consistency
of Hann window log-magnitudes for redundancies in the
range 6 to 16.

In a second test, we fix a Gaussian STFT with redundancies
4 and 8 and evaluate the behaviour of % under deviations
from true STFT magnitudes. To this end, we add various
levels of uniform Gaussian noise to the STFT before com-
puting the log–magnitude, see Fig. 4. At redundancy 8
we observe a monotonous decrease of consistency with in-
creasing noise level. In fact, the consistency converges to
the level of random noise at high noise levels. Especially
for music, % is sensitive to even small levels of noise. At
redundancy 4, the changes are not quite as pronounced, but
the general trend is similar. While this is not a full analy-
sis of the measure %, it is reasonable to expect that models
that match the value of % closely generate approximately
consistent log-magnitudes

Furthermore, the results suggest that % has a low standard
deviation across data of the same distribution. In the context
of GANs, where no obvious convergence criterion applies,
% can thus assist the determination of convergence and di-
vergence by tracking

γ =
∣∣∣EM∼PMreal

[
%(M)

]
− EM∼PMfake

[
%(M)

]∣∣∣ . (10)
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Figure 4. Consistency as a function of SNR obtained by adding
complex-valued Gaussian noise to the STFT coefficients.

4. Time-Frequency Generative Adversarial
Network (TiFGAN)

To demonstrate the potential of the guidelines and principles
for generating short-time Fourier data presented in Section 2,
we apply them to TiFGAN, which unconditionally generates
audio using a TF representation and improves on the current
state-of-the-art for audio synthesis with GANs. For the
purpose of this contribution, we restrict to generating 1
second of audio, or more precisely L = 16384 samples
sampled at 16 kHz. For the short-time Fourier transform,
we fix the minimal redundancy that we consider reliable,
i.e., M/a = 4 and select a = 128,M = 512, such that
MR = 257, N = L/a = 128 and the STFT matrix S
is of size CMR×N . This implies that the frequency step is
b = L/M = 32, such that we chose for the analysis window
g a (sampled) Gaussian with time-frequency ratio λ = 4 =
aM/L. Since the Nyquist frequency is not expected to hold
significant information for the considered signals, we drop
it to arrive at a representation size of 256 × 128, which is
well suited to processing using strided convolutions.
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Figure 5. From left to right: log-magnitude spectrogram, distribu-
tion of the magnitude, distribution of the log-magnitude.

The log-magnitude distribution is closer to human sound
perception and, as show in Fig. 5, it doesn’t have the large
tail of the magnitude STFT coefficients, therefore we use
it for the training data. To do so, we first normalize the
STFT magnitude to have maximum value 1, such that the
log-magnitude is confined in (−∞, 0]. Then, the dynamic
range of the log-magnitude is limited by clipping at −r
(in our experiments r = 10), before scaling and shifting
to the range of the generator output [−1, 1], i.e. dividing

Figure 6. The general architecture with parameters T = 16384,
a = 128, M2 = 256 c = 1, 3, d = 100. Here b = 64 is the
batch size. The orange and green steps describe the pre- and
post-processing stages.

by r/2 before adding constant 1. The network trained to
generate log-magnitudes will be referred to as TiFGAN-M.
Generation of, and synthesis from, the log-magnitude STFT
is the main focus of this contribution. Nonetheless, we
also trained a variant architecture TiFGAN-MTF for which
we additionally provided the time- and frequency-direction
derivatives of the (unwrapped, demodulated) phase5 (Arfib
et al., 2011; Dolson, 1986).

For TiFGAN-M, the phase derivatives are estimated from
the generated log-magnitude following (5). For both
TiFGAN-M and TiFGAN-MTF, the phase is reconstructed
from the phase derivative estimates using phase-gradient
heap integration (PGHI, Průša et al., 2017), which requires
no iteration, such that reconstruction time is comparable to
simply integrating the phase derivatives. For synthesis from
the STFT, we use the canonical dual window (Strohmer,
1998; Christensen, 2016), precomputed using the Large
Time-Frequency Analysis Toolbox (LTFAT, Průša et al.,
2014), avalable at ltfat.github.io.

GAN architecture: The TiFGAN architecture, depicted
in Fig. 6, is an adaptation of DCGAN (Radford et al., 2016)
and similarly to WaveGAN and SpecGAN (Donahue et al.,
2019), we add one convolutional layer each to generator and
discriminator to enable the generation of larger matrices.
Moreover, we generate data of size (256, 128), a rectangu-
lar array of twice the width and four times the height of
DCGANs output, and twice the height of SpecGAN, such
that we also adapted the filter shapes to better reflect and cap-

5Phase derivatives were obtained using the gabphasegrad
function in the Large Time-Frequency Analysis Toolbox (LTFAT,
Průša et al., 2014).

ltfat.github.io
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ture the rectangular shape of the training data6. Precisely in
comparison to SpecGAN, we use filters of shape (12, 3) in-
stead of the 31% smaller (5, 5). To compensate, we further
reduce the number of filter channels of the fully-connected
layer and the first convolutional layer of the generator by a
factor of 2. Since these two layers comprise the majority of
parameters, our architecture only has 10% more parameters
than SpecGAN in total. More details on the architecture can
be found in Section ?? of the supplementary material.

Training: During training of TiFGAN, we monitored the
relative consistency γ of the generator (10) in addition to the
adversarial loss, negative critic and gradient penalty. In the
optimization phase, networks that failed to train well, could
often be detected to diverge in consistency and discarded
after less than 50k steps of training (1 day), while promising
candidates quickly started to converge towards the consis-
tency of the training data, i.e., γ → 0, see Fig. 7. Networks
with smaller γ synthesized better audio, but when trained
for many steps, they were sometimes less reliable in terms
of semantic audio content, e.g., for speech they were more
likely to produce gibberish words than with shorter training.
Our networks were trained for 200k steps as this seemed
to provide reasonably good results in both semantic and
audio quality. We optimized the Wasserstein loss (Gulrajani
et al., 2017) with the gradient penalty hyperparameter set to
10 using the ADAM optimizer (Kingma & Ba, 2015) with
α = 10−4, β1 = 0.5, β2 = 0.9 and performed 5 updates
of the discriminator for every update of the generator. For
the reference condition, we used the pre-trained WaveGAN
network provided by (Donahue et al., 2019)7.

Figure 7. Eq. (10) for three networks. Gray: failed network. Red:
TiFGAN-M. Blue: TiFGAN-MTF as in Sec. 4.

Comparison to SpecGAN (Donahue et al., 2019):
TiFGAN is purposefully designed to be similar to Spec-
GAN8 to emphasize that the main cause for improved re-
sults is the handling of time-frequency data according to the

6When training on piano data, we also observed that, when
using square filters, the frequency content of note onsets was
unnaturally dispersed over time. This effect was notably reduced
after switching to tall filters

7https://github.com/chrisdonahue/wavegan
8Note that SpecGAN is of equal size as WaveGAN.

guidelines in Section 2.2. SpecGAN relies on an STFT of re-
dundancyM/a = 2 with Hann window of length Lg = 256,
time step a = 128 and M = 256 channels. According to
Section 2.2, this setup is not very well suited to generative
modeling. PLR in particular is expected to be unreliable,
which is evidenced by the results reported in (Donahue et al.,
2019), which employ the classical Griffin-Lim algorithm
(Griffin & Lim, 1984) for PLR. The choice of STFT param-
eters for SpecGAN fixes a target size of shape (128, 128),
while for TiFGAN the target size is (256, 128). This re-
quired some changes to the network architecture, as pre-
sented above. Finally, SpecGAN performs a normalization
per frequency channel over the entire dataset, preventing the
network to learn the natural relations between channels in
the STFT log-magnitude, which are crucial for consistency,
as shown in Section 2.2.

4.1. Evaluation

To evaluate the performance of TiFGAN, we trained
TiFGAN-M and TiFGAN-MTF using the procedure out-
lined above on two datasets from (Donahue et al., 2019): (a)
Speech, a subset of spoken digits ”zero” through ”nine”
(sc09) from the ”Speech Commands Dataset” (Warden,
2018). This dataset is not curated, some samples are noisy
or poorly labeled, the considered subset consists of approxi-
mately 23,000 samples. (b) Music, a dataset of 25 minutes
of piano recordings of Bach compositions, segmented into
approximately 19,000 overlapping samples of 1 s duration.

Evaluation metrics: For speech and music, we provide
audio examples online9. For speech, we performed listening
tests and evaluated the inception score (IS) (Salimans et al.,
2016) and Fréchet inception distance (FID) (Heusel et al.,
2017), using the pre-trained classifier provided with (Don-
ahue et al., 2019). For the real data and both variants of
TiFGAN, we moreover computed the consistency %, see Eq.
(9), and the relative spectral projection error (RSPE) in dB,
after phase reconstruction from the log-magnitude, i.e.,

10 log10

(
‖|S̃| − | Sg(iSg̃(S̃))|‖

‖S̃‖

)
, (11)

where |S̃| = |Sg(s)| in the case of real data and |S̃| =
exp(M̃), with the generated log-magnitude M̃, for the gen-
erated data. Phase-gradient heap integration was applied to
obtain S̃ from |S̃| (and generated phase derivatives in the
case of TiFGAN-MTF).

Listening tests were performed in a sound booth and sounds
were presented via headphones, see supplementary material
??. The task involved pairwise comparison of preference
between four conditions: real data extracted from the dataset,

9http://tifgan.github.io

https://github.com/chrisdonahue/wavegan
http://tifgan.github.io
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vs TiFGAN-M vs TiFGAN-MTF vs WaveGAN Cons RSPE (dB) IS FID
Real 86% 90% 94% 0.70 -22.0* 7.98 0.5
TiFGAN-M – 67% 75% 0.67 -13.8 5.97 26.7
TiFGAN-MTF 33% – 55% 0.68 -12.5* 4.48 32.6
WaveGAN 25% 45% – – – 4.64 41.6

Table 1. Results of the evaluation. First three left columns: Preference (in %) of the condition shown in a row over the conditions show in
a column, obtained from listening tests. Cons: averaged consistency measure ρ. RSPE: as in Eq. (11). IS: inception score. FID: Fréchet
inception distance. *These values were obtained by discarding the phase and reconstructing from the magnitude only. For the listening
tests, the signals contained the full representation.

TiFGAN-M generated examples, TiFGAN-MTF generated
examples, and WaveGAN generated examples. In each
trial, listeners were provided with two sounds from two
different conditions. The question to the listener was ”which
sound do you prefer?”. Signals were selected at random
from 600 pre-generated examples per condition. Each of
the six possible combinations was repeated 80 times in
random order, yielding 480 trials per listener. The test lasted
approximately 45 minutes including breaks which subjects
were allowed to take at any time. Seven subjects were
tested and none of them were the authors. A post-screening
showed that one subject was not able to distinguish between
any of the conditions and thus was removed from the test,
yielding in 2880 valid preferences in total from six subjects.

Results: The results are summarized in Table 1. On av-
erage, the subjects preferred the real samples over Wave-
GAN’s in 94% of the examples given. For TiFGAN-MTF,
the preference decreased to 90% and for TiFGAN-M further
to 86%. The large gap between generated and real data can
be explained by the experimental setup that enables a very
critical evaluation. Nonetheless, it is apparent that TiFGAN-
M performed best in the direct comparison to real data by a
significant margin. Comparison of the other pairings leads
to a similar conclusion: Subjects preferred TiFGAN-MTF
over WaveGAN in 55% of the examples given, TiFGAN-M
over WaveGAN in 75% and TiFGAN-M over TiFGAN-
MTF in 67%. While TiFGAN-M clearly outperformed the
other networks, TiFGAN-MTF was only slightly more often
preferred over WaveGAN.

The analysis of IS and FID leads to similar conclusions:
TiFGAN-M showed a large improvement on both measures
over the other conditions, with still a large gap to the real-
data performance. On the other hand, comparing WaveGAN
to TiFGAN-MTF, the results for both measures are mixed.

When evaluating the magnitude spectrograms generated by
TiFGAN-M, TiFGAN-MTF, and those obtained from the
real data, we notice that their consistencies are similarly
close. Going a step further and applying PGHI to these mag-
nitude spectrograms, the relative projection errors (RSPE)
of the two networks are similar, but worse than those of the
real signals, meaning that there is room for improvement
in this regard. For the listening tests, PGHI was applied
to the output of TiFGAN-MTF using the generated phase

derivatives. In this setting, the RSPE was -7.5 dB, a substan-
tially smaller value. This confirms our finding that phase
reconstruction provides better results than phase generation
by our network.

In summary, TiFGAN-M provided a substantial improve-
ment over the previous state-of-the-art in unsupervised
adversarial audio generation. Although the results for
TiFGAN-MTF are not as clear, we believe that direct gen-
eration of phase could provide results on par or better than
the magnitude alone and should be systematically investi-
gated. Further research will focus on avoiding discrepancies
between the phase derivatives and the log-magnitude.

5. Conclusions
In this contribution, we considered adversarial generation
of a well understood time-frequency representation, namely
the STFT. We proposed steps to overcome the difficulties
that arise when generating audio in the short-time Fourier
domain, taking inspiration from properties of the continu-
ous STFT (Portnoff, 1976; Auger et al., 2012; Gröchenig,
2001) and from the recent progress in phaseless reconstruc-
tion (Průša et al., 2017). We provided guidelines for the
choice of STFT parameters that ensure the reliability of
phaseless reconstruction. Further, we introduced a new mea-
sure assessing the quality of a magnitude STFT, i.e., the
consistency measure. It is computationally cheap and can
be used to a-priori estimate the potential success of phase-
less reconstruction. In the context of GANs, it can ease the
assessment of convergence at training time.

Eventually, we demonstrated the value of our guidelines in
the context of unsupervised audio synthesis with GANs. We
introduced TiFGAN, a GAN directly generating invertible
STFT representations. Our TiFGANs, trained on speech
and music outperformed the state-of-the-art time-domain
GAN both in terms of psychoacoustic and numeric evalu-
ation, demonstrating the potential of TF representations in
generative modeling.

In the future, further extensions of the proposed approach
are planned towards TF representations on logarithmic and
perceptual frequency scales (Brown, 1991; Brown & Puck-
ette, 1992; Holighaus et al., 2013; 2019; Necciari et al.,
2018).
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