
GACELA

A generative adversarial context encoder
for long audio inpainting

Andrés Marafioti, Piotr Majdak, Nicki Holighaus, and Nathanaël Perraudin
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Abstract

We introduce GACELA, a generative adversarial network
(GAN) designed to restore missing musical audio data with
a duration ranging between hundreds of milliseconds to
a few seconds, i.e., to perform long-gap audio inpainting.
While previous work either addressed shorter gaps or re-
lied on exemplars by copying available information from
other signal parts, GACELA addresses the inpainting of
long gaps in two aspects. First, it considers various time
scales of audio information by relying on five parallel dis-
criminators with increasing resolution of receptive fields.
Second, it is conditioned not only on the available informa-
tion surrounding the gap, i.e., the context, but also on the
latent variable of the conditional GAN. This addresses the
inherent multi-modality of audio inpainting at such long
gaps and provides the option of user-defined inpainting.
GACELA was tested in listening tests on music signals of
varying complexity and gap durations ranging from 375 ms
to 1500 ms. While our subjects were often able to detect
the inpaintings, the severity of the artifacts decreased from
unacceptable to mildly disturbing. GACELA represents a
framework capable to integrate future improvements such
as processing of more auditory-related features or more ex-
plicit musical features.
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1 Introduction

Audio signals frequently suffer from undesired localized
corruptions. These corruptions can be a product of is-
sues during the recording, packet-loss in transmission, or
a faulty storage such as a scratched vinyl record. Al-
though the corruptions may have different roots, the study
of their removal can be unified as the restoration of local-
ized lost information, usually called audio inpainting [1].
This restoration has also been referred to in the literature
as audio interpolation and extrapolation [2, 3], or waveform
substitution [4]. For short corruptions affecting less than a
few tens of milliseconds, the goal of audio inpainting algo-
rithms has been to recover the lost information exactly [5].
But as the corruptions affect longer periods of time, that
goal becomes unrealistic. For long corruptions, audio in-
painting algorithms attempt to reduce the damage by pre-
venting audible artifacts and introducing new coherent in-
formation. The new information needs to be semantically
compatible, a challenging task for for music, which often
has a strict underlying structure with long dependencies.
Previous work [6] tried to exploit this structure by repur-
posing information already available in the signal instead
of generating new information. This approach has obivous
downsides as it expects music to have repetitions and it
usually modifies the length of the corruption. Others [7]
have proposed methods that do generate new information,
but aim at exact reconstruction and therefore fail to gen-
eralize for corruptions over tens of milliseconds.

In this contribution, we propose a novel audio inpainting
algorithm that generates new information and is specifi-
cally designed to address corruptions in the range between
hundreds of milliseconds and seconds. In particular, we
study the algorithm for the reconstruction of musical sig-
nals, i.e., a mix of sounds from musical instruments or-
ganized in time. Further, we assume that areas of lost
information are separated in time, such that the local in-
formation surrounding the gap, the context, is reliable and
can be exploited. The proposed algorithm relies on a gen-
erative adversarial network (GAN) [8] conditioned on the
encoded context information. We refer to the algorithm
as a context encoder following [9, 7]. Our context encoder
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aims at generating content that matches the sound charac-
teristics and respects the semantic cohesion of the available
bordering information. In this contribution, we explain our
design choices and we provide a thorough evaluation of our
context encoder to determine factors with the largest po-
tential for future improvement. Our software and trained
models, complemented by instructive examples, is available
at https://andimarafioti.github.io/GACELA/.

1.1 Related audio-inpainting algorithms

The term ”audio inpainting” was coined by Adler et al.
to describe a large class of inverse problems in audio pro-
cessing [1]. Their own work, however, mostly studied the
restoration of gaps in audio signals. Generally, audio in-
painting problems are concerned with audio represented
as data in some feature domain and assume that chunks of
that data are corrupted yielding gaps in the representation.

The number and duration of the gaps as well as the type
of corruption is manifold. For example, in declicking and
declipping, corruptions may be frequent, but mostly con-
fined to disconnected time-segments of few milliseconds du-
ration or less. We refer to this as inpainting of short gaps.
On the other hand, gaps on a scale of hundreds of mil-
liseconds or even seconds may happen, e.g., when reading
partially damaged physical media, in live music recordings,
when unwanted noise originating from the audience needs
to be removed, or in audio transmission with a total loss
of the connection between transmitter and receiver lasting
for seconds. In such cases we attempt to inpaint long gaps.

For inpainting short gaps, various solutions have been
proposed. [1] proposed a framework based on orthogonal
matching pursuit (OMP), which has inspired a consider-
able amount of research exploiting TF sparsity [10, 11, 12,
5] or structured sparsity [13, 14, 15]. As discussed in [5],
such methods do not extend well to longer gaps, see also
[16] for a recent study of sparsity-based audio inpainting.
Other methods for short gap inpainting and relying on TF
representations rely, e.g., on a regression model [17], or
nonnegative matrix and tensor factorization [18, 19, 20].
More recently, a powerful framework has been proposed for
various audio inverse problems [21] including time-domain
audio inpainting, source separation [22], and declipping [23]
even in a multichannel scenario [24].

Interpolation algorithms based on linear prediction cod-
ing (LPC) [25] are flexible enough to cover various gap
lengths, but pose strong assumptions on stationarity of the
distorted signal [26, 3, 27]. Nonetheless, they outperform
the aforementioned short gap methods on gap durations
above 50 ms [5]. Despite a recent contribution by the au-
thors proposing a neural context encoder to perform in-
painting of medium duration gaps [7, 28], LPC is still, in
our opinion, amongst the most promising methods for in-
painting medium duration gaps.

On the other hand, for inpainting long gaps, i.e., gaps ex-
ceeding several hundred milliseconds, recent methods lever-
age repetition and determine the most promising reliable

segment from uncorrupted portions of the input signal.
Restoration is then achieved by inserting the determined
segment into the gaps. These methods do not claim to re-
store the missing gap perfectly, they aim at plausibility. For
example, exemplar-based inpainting was proposed based
on a graph encoding spectro-temporal similarities within
an audio signal [6]. Other examples of long gap audio in-
painting by means of exemplars include [29, 30, 31, 32, 33].
Not aiming for accurate recovery of the missing informa-
tion, but instead for a plausible solution, numerical criteria
are ill-suited for assessing the success of long gap inpaint-
ing, which usually requires extensive perceptual evaluation.

Starting around 2019, several groups of researchers have
attempted to tackle the audio inpainting problem using
deep neural networks and TF representations. In [34],
spectrogram inpainting from combined audio and video
information is proposed, while [35] considers inpainting
of time-frequency masked speech data. The context en-
coder presented in [7, 28] is specifically targeted to medium
duration gaps. The pre-print [36] seems to be the first
to evaluate the inpainting of slightly longer gaps (100 to
400 ms) with neural networks, comparing several models
originally proposed for general conditioned audio synthesis
with the graph-based method [6], as well as the authors’
own proposal for a deep neural system for audio inpaint-
ing. Generally speaking, deep audio inpainting seems to
be a particularly tough instance of conditioned deep neu-
ral audio synthesis, since the conditioning only contains
indirect information about the content to be generated,
which nonetheless needs to be seamlessly inserted into the
existing reliable audio.

1.2 Related deep-learning techniques /
audio synthesis with ML

There have been many attempts to synthesize audio using
neural networks. However, neural audio synthesis remains
a particularly challenging task because of the presence of
complex structures with dependencies on various temporal
scales. Neural audio synthesizers are often conditioned to
reduce the dependencies on larger temporal scales [37, 38],
but even then the networks that finally synthesize the sig-
nal are fairly sophisticated [39, 40, 41, 42, 43, 44]. This
can be partially explained by these networks modeling au-
dio as a time representation with a high temporal resolu-
tion; audio time signals usually have at least 16,000 sam-
ples per second. In contrast, when modeling audio as a
time-frequency (TF) representation, the temporal resolu-
tion is a parameter of the model. In fact, TF representa-
tions of audio are widely applied to neural networks, e.g.,
for solving discriminative tasks, in which they outperform
networks directly trained on the waveform [45, 46, 47]. TF
representations are also commonly chosen to condition neu-
ral synthesizers [48, 49], e.g., Tacotron 2 [50] relies on non-
invertible mel-frequency spectrograms and Timbretron [51]
relies on the constant-Q transform. In those cases, the gen-
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eration of a time-domain signal from the TF coefficients is
then achieved by training a conditional neural synthesizer
to act as a vocoder. Despite recent improvements in neural
synthesizers modeling audio in the TF domain [52, 53, 54],
the state-of-the-art neural synthesizers still model audio in
the time domain.

We can obtain valuable insights on the design of a neural
synthesizer for audio inpainting from music synthesizers.
Modeling music has proven particularly difficult due to a
wide range of timescales in dependencies from pitch and
timbre (short-term), through rhythm (medium-term) to
song structure (long-term) [55, 38]. The long-range depen-
dencies can be addressed by synthesizing music in multiple
steps. Different features have been proposed as intermedi-
ate representations [56, 57, 58], with a common symbolic
one being MIDI [59, 55, 60]. Conditioning neural synthe-
sizers with neurally generated MIDI has many advantages:
1) it is analogous to the discrete structure embedded in mu-
sic’s generative process, in the words of [55]: ”a composer
creates songs, sections, and notes, and a performer real-
izes those notes with discrete events on their instrument,
creating sound“. 2) MIDI is easy to interpret and mod-
ify. Users can interact with MIDI pieces generated from
a network before the neural synthesizer plays them. On
the other hand, MIDI’s major drawback is that in order to
learn from it, one needs large-scale annotated datasets. For
piano music, [55] addressed this by creating such a dataset,
but for general music we have not found a suitable dataset.

2 The inpainting system:
GACELA

Our generative adversarial context encoder (GACELA)
targets music inpainting in long gaps, i.e., in the range be-
tween hundreds of milliseconds and seconds. In this range,
there are usually multiple plausible solutions for music in-
painting and we consider the task as multimodal. For ex-
ample, on a gap where originally a single chord was played,
there could be several other chords that fill in the gap while
still sounding plausible. For each chord there are even sev-
eral variations: different intensities or onsets for each note.
The multi-modality present at this range needs to be taken
into account to model the task. Considering that a stan-
dard regression loss models a unique solution, it would lead
to an average of the possible solutions and it is a bad fit for
the task at this range. To solve this challenge, we model
the task with a GAN, which is able to model the distri-
bution of possible gap replacements instead of producing
a single candidate. GANs rely on two competing neural
networks trained simultaneously in a two-player min-max
game: The generator produces new data from samples of
a random variable; The discriminator attempts to distin-
guish between these generated and real data. During the
training, the generator’s objective is to fool the discrimi-
nator, while the discriminator attempts to learn to better

classify real and generated (fake) data.

An overview of our end-to-end audio generation is pre-
sented in Fig. 1. As in [7], we consider the audio signal
s consisting of the gap sg and the context signals before
and after the gap, sb and sa, respectively. The signal s
is transformed into mel-scale time-frequency spectrograms
(mel spectrograms) and unreliable time frames, i.e., those
that have nonnegligible overlap with the gap, are discarded.
The remaining mel coefficients form the preceding context
Sb and succeeding context Sa. After further dimensional-
ity reduction, the contexts serve to condition the generator.
The output of the generator is a log-magnitude STFT Sg,
from which an audio signal is synthesized using established
methods for phaseless reconstruction.

The proposed adversarial context encoder is comprised
of a generator network and five discriminator networks,
which consider the (generated or real) audio content in the
gap region and its context at different scales. Each dis-
criminator receives the generated (or real) gap data, as
well as different amounts of context, encoded either as log-
magnitude short-time Fourier coefficients or mel spectro-
grams, depending on the scale of the considered context.
The generator, a context encoder conceptually split into
two identical border encoder networks and one decoder net-
work, is conditioned on the real border data encoded as mel
spectrograms. Such conditioning is commonly achieved in
GANs by supplying auxiliary data to both the generator
and the discriminator, further specifying the generator’s
task. To date, several formulations of conditional architec-
tures have been proposed [61]. In this contribution, we opt
to condition solely on the close-range context, i.e., few sec-
onds of TF audio data preceding and succeeding the gap.
Converting the time-domain audio into a log-magnitude
time-frequency representation partially solves the problem
of scales, since a large number of audio samples are rep-
resented by a small number of time frames in the time-
frequency representation. Hence, all audio data is trans-
formed into, and represented by, log-magnitude short-time
Fourier spectrograms and sometimes further processed into
mel spectrograms [62]. The latter is the de-facto stan-
dard for a perceptually motivated dimensionality-reduced
time-frequency representation and is well-suited as a ba-
sic encoding for larger scale conditioning data, when re-
duced precision is sufficient or even desired. The former
on the other hand provides a redundant, highly detailed
and interpretable representation of audio from which the
source signal can be reconstructed in excellent quality by
means of recent algorithms for phaseless reconstruction
[63, 64, 65, 66].

The software was implemented in PyTorch [67] and is
publicly available, as well as every trained model here dis-
cussed.1 The audio processing blocks described in the next
subsection are computed using the Tifresi package [68]. For
computing the STFT and mel representations, Tifresi de-
pends on LTFATpy [69] and librosa [70], respectively.

1www.github.com/andimarafioti/GACELA
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Figure 1: Overview of the end-to-end audio generation system. The discriminators are only used for training the
generator. The phase construction extends the phase from the real context into the generated spectrogram.

2.1 Processing stages

In addition to the network architecture, the proposed
training- and generation-time pipelines require some sim-
ple, fixed signal processing blocks to transform the data at
various points in the processing chain.

• STFT: Computes the log-magnitude STFT spectro-
gram of the input audio waveform. Optionally, the
STFT phase can be stored for later use. In the pro-
vided implementation, all STFTs are computed us-
ing truncated Gaussian windows with a hop size of
a = 256 and M = 1024 frequency channels, following
the guidelines proposed in [53], leading to a represen-
tation with redundancy M/a = 4.

• ISTFT: Given a log-magnitude STFT and matching
STFT phase, the ISTFT block performs STFT inver-
sion. Inversion is matched to the STFT block in the
following sense: When log-magnitude and phase in-
put equal the output of STFT, the waveform output
of ISTFT equals the waveform input of STFT. See
[71, 72, 73] for more information on how to invert re-
dundant STFTs.

• PGHI: Constructs a candidate phase for a given log-
magnitude STFT spectrogram by means of phase gra-
dient heap integration [63]. The output phase can
be combined with the input spectrogram for use with
ISTFT.

• MEL: Computes a mel-scale spectrogram from a
given log-magnitude STFT spectrogram. In the pro-
vided implementation, all mel spectrograms are set to
have 80 filters.

• Time-Averaging (TA X): Reduces the time dimen-
sion of a log-magnitude STFT spectrogram or MEL
spectrogram by a factor of X, where X is a positive
integer. Dimensionality reduction is achieved by av-
eraging every X successive time frames of the input
spectrogram.

At generation time, the audio processing blocks are used
to preprocess the generator input and during audio synthe-
sis from the generator output as shown in Figures 1 and 2.
During training, the discriminator input is preprocessed as
well, as shown in Figure 3.

We use PGHI [63] over competing phaseless recon-
struction algorithms such as Griffin-Lim [74] or LeRoux’s
weighted least squares [66] for various reasons: PGHI is
non-iterative, highly efficient and often outperforms other
algorithms in terms of perceptual reconstruction quality,
sometimes even significantly [63, 75, 64].

2.2 The adversarial context encoder

Generator: The overall structure of the generator is
shown in Fig. 2. The preceding and succeeding contexts
are each provided to their associated encoder network after
passing through the preprocessing chain, consisting of an
STFT block, followed by a MEL and TA 4 block. Both
encoders share the same architecture: 4 convolutional lay-
ers with stride 2 and ReLU activations. Parameters are
not shared between the encoders. Both encoder outputs
and a realization of the latent variable are concatenated
and passed to the decoder. The latent variable is drawn
from a 128-dimensional uniform distribution. The decoder
itself is comprised of a fully-connected layer with output
size 8192, followed by 4 transposed convolution layers with
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Figure 2: Overview of the generation process. At training time, the generator output is forwarded to the discriminators.
During generation, an audio waveform is generated by processing the output with the PGHI and ISTFT blocks.

stride 2, further 2 convolutional residual layers and a final
transposed convolution layer. The decoder output has ex-
actly the shape of the gap in the original log-magnitude
STFT spectrogram and is interpreted as log-magnitude
STFT coefficients for the purpose of synthesis and propa-
gation through the discriminators. For more details about
the generator, refer to the accompanying code implemen-
tation.

Discriminators: We adapt the multi-scale architecture
from [76] to TF representations, with five discriminators
operating on five different time scales and two different
frequency representations. In the audio domain, multiple
discriminators operating on different scales have success-
fully been used as well [42], where the authors directly
process time-domain audio. In the proposed architecture,
all discriminators are supplied with time-frequency spec-
trograms and between successive discriminators, the recep-
tive field is increased by a factor of two, see Fig. 3. Every
discriminator has five convolutional layers with stride 2.
While the first two discriminators, with smaller receptive
field, process log-magnitude STFT spectrograms directly,
further discriminators process mel coefficients. Since the
increased receptive field is achieved by time-averaging, the
number of input time frames is equal for all discriminators.
On the other hand, the input mel spectrograms supplied
to discriminators 3 through 5 posses a reduced number of
frequency channels, such that these discriminators were al-
located 4 times less channels in every convolutional layer.
For more details about the discriminators, refer to the ac-
companying code implementation.

3 Evaluation methods

The main objective of the evaluation is to determine to
which extent our system can restore localized corruptions
in different types of musical signals. We want to deter-
mine 1) the effect of the complexity level of the musical
signal on the inpainting performance and 2) the effect of
the gap length on the inpainting performance. To address
1), we built five different datasets of musical signals with
increasing complexity from two types of audio signals: au-
dio synthesized from MIDI files and recorded from physical
instruments. For 2), the system was trained with an in-

MEL

TA 4

-

D3

TA 8 TA 16TA 2

D2 D4 D5D1

Figure 3: Overview of the multi-scale architecture from the
discriminator. D1-D5 represent the individual discrimina-
tors. The different receptive fields of the discriminators
are marked in colors. The center, marked with red lines, is
the input of the first discriminator and contains only the
generated or real gap.

serted gap size of either 375ms, 750 ms or 1,5 s. For these
two tests, we evaluated the inpainting quality by means of
listening tests.

The second objective of the evaluation is to better under-
stand how the system performs the inpainting to facilitate
improving it in the future and to gain insight for the devel-
opment of other similar systems. Since our system relies on
PGHI for phase reconstruction, we evaluated the impact of
the PGHI on the audio inpainting. Further, we investigate
the influence of the latent variable on the generator and
the processing of context data by the encoder. Finally, we
compare our method to the one presented in [6].
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3.1 Complexity levels

We expect the success of our method to be correlated to
the complexity of the music it is trained on. We tested this
hypothesis with listening tests. To do so, we trained the
method on different datasets with increasing complexity.
The first two datasets were synthesized from MIDI data
using pretty midi [77], specifically it’s fluidsynth API. We
generated just one instrument and set that instrument to
the piano program 1 so that the whole dataset would have
the same sound complexity and to reduce the variability
in the datasets. In total, we trained networks with five
complexity levels, out of which four surpassed an initial
informal evaluation, such that they were considered for the
listening tests. Therefore, we tested 4 complexity levels,
with 3 conditions per case, and 12 songs, giving us a total
of 144 stimuli per block for this test.

1) Simple midi. The simplest case we handled was
‘hand-written’ MIDI data. Here, the MIDI annotations
have little variation since they are written down by hu-
mans on a quantized structure. For this case, we used
the Lakh MIDI dataset [78], a collection of 176,581 unique
MIDI files, 45,129 of which have been matched and aligned
to entries in the Million Song Dataset [79]. The Lakh MIDI
dataset was generated with the goal of facilitating large-
scale music information retrieval, both symbolic (using the
MIDI files alone) and audio content-based (using informa-
tion extracted from the MIDI files as annotations for the
matched audio files).

2) Midi recorded from human performances. For
the second complexity level, we used MIDI data that was
extracted from performances on a piano. Here, the added
complexity is the lack of a strict musical structure such as
the precise tempo present from level 1). For this case, we
used the Maestro dataset [55], a dataset containing over
200 hours of paired audio and MIDI recordings from ten
years of International Piano-e-Competition. In this com-
petitions, virtuoso pianists perform on Yamaha Disklaviers
which, in addition to being concert-quality acoustic grand
pianos, utilize an integrated high-precision MIDI capture
and playback system. The MIDI data includes key strike
velocities and sustain/sostenuto/una corda pedal positions.
The repertoire is mostly classical, including composers
from the 17th to early 20th century.

3) Audio recordings of piano performances. For
the third complexity level, we used real recorded perfor-
mances of grand pianos. These are the same pieces from
the second complexity level. This level adds the sound
complexity of a real instrument compared to a simple midi
synthesized sound.

4) Free music. The fourth level of complexity is the
last one we used for the listening tests. For this, we wanted
to test the system on a broader scenario including a more
general definition of music. On this level, the added com-
plexity is the interaction between several real instruments.
To remove some variation from the dataset, we trained the
network on a single genre at the time, in this case either

rock or electronic music (for the listening test we only used
rock samples). For this complexity level, we used the free
music archive dataset (FMA, [80]), particularly, a subset
we generated by segmenting the ‘small’ dataset by genre.
FMA is an open and easily accessible dataset, usually used
for evaluating tasks in musical information retrieval. The
small version of FMA is comprised of 8,000 30-s segments
of songs with eight balanced genres sampled at 44.1 kHz.

3.2 Gap durations

We expect the success of our method to be correlated to
the length of the gap. To test this hypothesis, we trained
different networks on different gap lengths and evaluated
them with listening tests. We kept the network structure
as fixed as possible, such that Fig. 3 still applies to ev-
ery network trained for this experiment. The selected gap
lengths were either 372 ms, 743 ms or 1486 ms. Since we
expect the effect of the gap length to be independent from
the effect of the complexity of the music, we trained all net-
works on the third complexity level: real piano recordings.
To evaluate the gap durations, we included two additional
conditions to the listening tests2.

3.3 Listening tests

We performed listening tests to determine the effects of
the complexity level and the gap length on the inpainting
performance.

Subjects. Candidates completed a self-assessment
questionnaire about their music listening habits. For the
evaluation, only candidates who listened to at least 4 hours
of music per week were considered. In total, 8 subjects
were selected for the test. They were paid on an hourly
basis. Before the experiment, the subject was informed
about the purpose and procedure of the experiment and
five exemplary files were presented: 1) a sound with a gap,
2) the same sound with a click, 3) the same sound with a
poor reconstruction, 4) the same sound with a good but
detectable reconstruction, and 5) the original sound. Any
questions with respect to the procedure were clarified.

Task. The task was similar to that from [6]. In each
trial, the subject listened to a sound stimulus and was
asked to pay attention to a potential artifact. A slider
scrolled horizontally while the sample was played indicat-
ing the current position within a stimulus. The subject
was asked to tag the artifact’s position by aligning a second
slider with the beginning of the perceived artifact. Then,
while listening again to the same stimulus, the subject was
asked to confirm (and re-align if required) the slider posi-
tion and answer the question ”How poor was it” The possi-
ble answers were: (0) no issue (”Kein Fehler”), (1) not dis-
turbing (”Nicht störend”), (2) mildly disturbing (”Leicht
störend”), and (3) not acceptable (”Nicht akzeptabel”).

2For this test, we did not need to include an additional 60 stimuli
since the 743 ms gaps, the clicks, and the real signals were already
considered on the complexity level.
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Then, the subject continued with the next trial by tapping
the ”next” button.

Conditions. Three conditions were tested: inpainted,
clicked and reference (original). For the inpainted condi-
tion, the song was corrupted at a random place with a
gap and then reconstructed with our method. The recon-
structed song was cropped 2 to 4 seconds (randomly vary-
ing) before and after the gap resulting in samples of 4.4
to 9.5-s duration. For the reference condition, the same
cropped segment was used. The reference condition did
not contain any artifact and was used to estimate the sen-
sitivity of a subject. For the click condition, a click was
superimposed to the cropped segment at the position where
the random gap started. The artifact in this condition was
used as a reference artifact and was clearly audible.

Across our datasets, the differences between songs are
larger that in a single song, so we do not test the same song
more than once. Instead, for each test 12 songs were used.
The combination of complexity levels and gap lengths de-
scribed in the remainder of this section resulted in a block
of 168 stimuli. All stimuli were normalized in level. Within
the block, the order of the stimuli and conditions was ran-
dom. Each subject was tested with two blocks, resulting
in 336 trials per subject in total. Subjects were allowed to
take a break at any time, with two planned breaks per
block. For each subject, the test lasted approximately
three hours.

3.4 Objective difference grade (ODG)

In order to evaluate the influence of the phase reconstruc-
tion algorithm, PGHI, we computed the objective differ-
ence grade (ODG, [81]), which corresponds to the sub-
jective difference grade used in human-based audio tests,
derived from the perceptual evaluation of audio quality.
ODG ranges from 0 to −4 with the interpretation shown
in Tab. 1; it was computed using the implementation pro-
vided with [82]. In our evaluation, the ODG was calcu-
lated on signals with the phase in the gap discarded and
reconstructed using PGHI.

ODG Impairment
0 Imperceptible
-1 Perceptible, but not annoying
-2 Slightly annoying
-3 Annoying
-4 Very annoying

Table 1: Interpretation of ODG.

4 Results

4.1 Impact of the phase reconstruction

In order to assess the impact of the phase reconstruction
on the inpainting quality, we evaluated the ODG of the real

Complexity level ODG (PGHI) ODG (Click)
1) Simple MIDI -0.109 -3.286
2) Recorded MIDI -0.125 -3.091
3) Recorded piano -0.231 -3.503
4) Free music -0.618 -1.732

Table 2: PGHI’s mean ODG accross 64 songs for different
datasets

signals against signals which consisted of unaltered mag-
nitude coefficients and PGHI applied only to recover the
phase on the gap. This way, we were able to estimate the
impact the PGHI will have for an output of the network
that does not present problems at a STFT level. Addi-
tionally, since we apply ODG to the full signals used on
the listening tests, we also compute the ODG for the click
signals, to corroborate that ODG is sensitive to localized
distortions.

The mean ODG obtained for 64 songs in the datasets
used for the listening tests for both PGHI applied to the
phase coefficients in the gap and a click applied at the be-
ginning of the gap is presented in Table 2. From this, we
can see that on the two MIDI datasets and the maestro
recordings, the effect of PGHI would be very hard for lis-
teners to detect, and even then it would not be annoying.
On the other side, the click would always be easy to detect
and annoying. For the most complex dataset, i.e., free mu-
sic, the influence of PGHI was between imperceptible and
perceptible but not annoying, and the influence of the click
was perceptible and between not annoying and slightly an-
noying. This indicates that for the considered datasets, the
effect of PGHI on the overall quality of the results will be
small.

4.2 Effect of the latent variable

We condition the generator not only on the encoded con-
text, but also on the latent variable, a random variable
drawn from a uniform distribution. We expect different
realizations of the random variable to output different so-
lutions for the task. However, this might not be the case:
It has been reported that GANs with strong conditioning
information do not rely heavily on the additional noise in-
put distribution [83, 84, 42]. In order to evaluate whether
the generator output changes depending on the latent vari-
able, we generate, for the same context drawn from the
complexity level 3, several different outputs, only changing
the latent variable realization.

The mean and standard deviation of the generated spec-
trograms for eight different samples from the latent vari-
able and eight different contexts from the maestro dataset
are shown in Fig. 4. We can see here that the mean
is not completely blurred, but the standard deviation is
not small. This indicates that the output does drastically
change with the different samples from the latent variable,
but there is still significant variation. Going into more
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Figure 4: Top: Each column represent the mean of 8 gen-
erated gaps drawing different samples from the latent vari-
able and keeping the context fixed. Bottom: Standard
deviation of those 8 gaps.

Figure 5: Every two columns separated with red lines show
two different outputs of the system for the same contexts
and different samples from the latent variable.

singular cases, in Fig. 5, we can see 4 pairs of gaps gener-
ated with 4 contexts and different realizations of the latent
variable. On these, the differences on the spectrograms
are clear and exemplify what we observed by analyzing a
larger batch of examples. Differences can manifest, e.g.,
changes to the intensity with which some notes are played
or modified chord sequences. Additionally, in our website3

we provide sound samples for the examples from Fig. 5.
These sound samples are clearly distinguishable from one
another.

3https://andimarafioti.github.io/GACELA/

4.3 Attention of the encoder

Our system encodes the context of the lost information in
order to use it as conditioning for a generative network. A
key variable here is how much context is encoded by the
system since the amount of context is proportional to the
computation time. Therefore, we evaluate how the context
is being exploited by the network; we provide the encoder
with different contexts drawn from the complexity level 3
and analyse the output it produces. Since the encoder is
comprised only of convolutional layers, and convolution is
translation equivariant, the encoder outputs preserves the
localization of the information. Hence by analysing the
output, we know which part of the input mel-spectrogram
was encoded for the network to decode a solution for the
gap.

Fig. 6 shows different spectrograms that were given as
input to the encoder before the gap and the average en-
coded output across channels. The sparse nature of the
code tells us that the encoder puts his attention mostly on
the two time bins adjacent to the gap. In the signal do-
main, this corresponds to roughly 1.4 seconds of audio con-
tent, when the full context represents 5.6 seconds. While
not displayed, the situation is symmetric for the post-gap
encoder. Fig. 7 shows different channels of the encoders
output for one particular input. We observe here that even
though the mean is focusing on the information closer to
the gap, the rest of the mel-spectrogram is still useful and
encoded.

Figure 6: Two repeated rows where top is input spectro-
grams for the encoder (after time and mel average) and
bottom is the encoder output averaged across channels.

4.4 Comparison to the similarity graph al-
gorithm.

Even though both the similarity graph algorithm (SGA)
and our method inpaint gaps of audio content in a simi-
lar range, they rely on very different conditions: a) SGA
should have sufficient material to compute the similarity
graph on and find a suitable solution, e.g., a full song. In
contrast, the neural network only takes a few seconds of
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Figure 7: Top left is input spectrograms for the encoder
(after time and mel average). Others are channels for the
output of the encoder.

audio context. b) SGA does not require any training and
can adapt to multiple datasets and gap lengths, while our
network needs hours of re-training for each new type of mu-
sic and (currently) target gap length. c) SGA may modify
the length of the gap, as well as the total length of the song
and some uncorrupted audio content at the border of the
gap. Our method only replaces the corrupted portion of
the song. d) Once trained, filling the gap using the network
is computationally more efficient than SGA.

Since the conditions for both methods are so different,
they suffer from different drawbacks. SGA always fills the
gap with content that has the same audio quality as the
rest of the piece, since it fills the gap with content from the
piece. However, the two transitions between the borders
around the gap can be unnatural if the algorithm picks an
unsuitable gap replacement. Furthermore, this selection
relies crucially on the existence of a good replacement in
the current song. Eventually, SGA results can be erratic
with the reconstruction being either very good or relatively
poor with a good/poor ratio depending highly on the spe-
cific piece of music it is applied to. Our network is limited
differently as it can only access a few seconds of informa-
tion around the gap and only works on the type of data it
has been trained on. Therefore, the perceived disturbances
in the gap reconstruction are different from SGA. In gen-
eral, the quality of the reconstruction is more uniform and
the transitions are not the main source of artifacts.

Under these considerations, a comparison to SGA in
terms of listening tests is outside of the scope of this con-
tribution. There are conditions for which SGA provides an
optimal solution: A localized corruption within a repetitive
song, where the solution does not need to be computed
quickly and a change in song duration is unproblematic.
On the other side, our method can handle other conditions
such as streamed signals where the full content is not avail-
able, signals that present repetitive corruptions in intervals
such that long context is not available, or signals without
repetition. Nevertheless, we applied our method trained
on the complexity level 4 to the rock songs used for the

listening tests in [6] and provide them on the webpage4.

4.5 General perceptual impact: detection
and severity.

Figure 8: Perceived artifacts across all subjects. Left panel:
Statistics of the detection rate. Left-center panel: Statis-
tics of the sensitivity index d′, i.e., the artifact-detection
rate relative to the false-alarm rate, with d′ = 1 corre-
sponding to the chance rate. Right-center: Statistics of
the severity ratings. Right: Statistics of the correlation
coefficients between the perceived artifact position versus
begin (B), end (E), and best choice of B and E (X) of the
artifact in the inpainting condition. Conditions: reference
(R), inpainted (I), and click (C), reference when perceived
as artifact (Rp), inpainted when perceived as artifact (Ip).
Statistics: Median (circle), 25% and 75% quartiles (thick
lines), coverage of 99.3% (thin lines, assuming normal dis-
tribution), outliers (crosses, horizontally jittered for a bet-
ter visibility).

Detection results are shown in the left panel of Fig.
8. The average detection rates for the click, inpainting,
and reference conditions were 99.9±0.4%, 84.7±9.3%, and
15.6±7.3%, respectively. The almost perfect detection rate
and small variance in the click condition demonstrates a
good attention of our subjects, for whom even a single
click was clearly audible. The clearly non-zero rate in the
reference condition shows that our subjects were highly
motivated to find artifacts. The detection rate in the in-
painted condition was between those from the reference
and click conditions. Note that the reference condition did
not contain any artifacts, thus, the artifact detection rate
in that condition is here referred to as the false-alarm rate.
The large variance of the false-alarm rate shows that it is
listener-specific. Thus, for further analysis, the detection
rates from the inpainted condition were related to the lis-
tener specific false-alarm rate, i.e., the sensitivity index d’
was used [85]. The false-alarm rate can be considered as
a reference for guessing, thus, d’ = 1 indicates that the

4https://andimarafioti.github.io/GACELA/

9

https://andimarafioti.github.io/GACELA/


artifacts was detected at the level of chance rate. The left-
center panel of Fig. 8 shows the statistics of d’ for the
inpainting and the click conditions. For the click condi-
tion, the average across all subjects was 8.2 ± 5.2, again
demonstrating a good detectability of the clicks. For the
inpainting condition, the average d’ was 6.9 ± 4.2, i.e.,
slightly below that of the click. A t-test performed on lis-
teners’ d’ showed a significant (p = 0.018) difference from
click-detection, indicating that our listeners, as a group,
were less able to detect the inpainting than the click con-
dition.

The center-right panel of Fig. 8 shows the statistics of
the severity ratings reported in the real, inpainted and click
conditions. For the click condition, the ratings were close
to 3 (”not acceptable”) with an average across all subjects
of 2.83 ± 0.33. This indicates that on average, our sub-
jects rated the clicks as not acceptable. In contrast, for
the inpainted condition, the average rating was 1.41±0.26,
between “not disturbing” and “mildly disturbing”. This
average considers undetected inpainted signals, rated with
a 0. The average rating for detected inpainted signals was
1.66 ± 0.24. This is still significantly (p < 0.001) lower
than the severity of the clicks as revealed by a paired t-test
calculated between the ratings for clicks and inpainted for
detected artifacts. This indicates that when the inpainting
artifacts were perceived, their severity was rated signifi-
cantly lower than that of the clicks. Additionally, when the
reference signals were classified as having an artifact, they
were on average rated across all subjects with 1.21±0.22.

The right panel of Fig. 8 shows the average correlation
coefficients between the perceived position of the inpainting
and its actual position. The correlations indicate that as
soon as our subjects detected an artifact, they had some
estimate of its position within the stimulus. For the clicks,
the higher correlation indicates that our subjects were able
to exactly determine and report the position of the click.

4.6 Effect of the complexity level

The left panel of Fig. 9 shows the percentages of artifact
perceived for every condition as a function of the com-
plexity level. The click was perfectly detected on every
complexity level, but the false-alarm rate varied across the
complexities. The center panel of Fig. 9 shows the statis-
tics of sensitivity to detect an artifact as a function of the
complexity level. The sensitivity index is related to the
false-alarm rate, as can be seen in the large variations on
the click sensitivity. In order to perform an statistical anal-
ysis, we did a three-way ANOVA on the sensitivities with
the factors subject, complexity level, and type of distortion
(inpainted and click) and their two-level interactions. The
main effect of distortion was significant (p < 0.001) indi-
cating that the inpainting significantly reduced the rate of
perceived artifacts.

The main effect of complexity was significant (p < 0.001)
and its interaction with the type of distortion was signifi-
cant (p = 0.007) as well. A multiple post-hoc comparison

Figure 9: Effect of the complexity level. Left: Statistics of
the detection rate. Center: Sensitivity representing abil-
ity to detect artifacts shown as statistics (as in Fig. 8)
and averages ±1 standard errors resulting from a three-
way ANOVA. Right: Ratings of artifact severity shown
as statistics (black: real; grey: inpainted; blue: click)
and averages ±1 standard errors resulting from a two-way
ANOVA. Click: sounds distorted with a click. Inpaint:
sounds distorted with a gap of 750 ms and then inpainted
by the GAN.

(Tukey-Kramer test) showed that for the complexity levels
of one and two, the rates in the click conditions were sig-
nificantly (p < 0.05) higher and lower, respectively, when
compared to those for levels of three and four. This indi-
cates that our subjects had a lower false-alarm rate in the
most simple, MIDI-based piano sounds aligned to a regu-
lar grid, but higher in the still simple but not so-regular
grid-based and more natural MIDI-generated piano sounds.
Given such a tiny change in the tested sound material, the
origin of such a large change in the detection rates can be
explained by having our experiment run into ceiling effects
– The obtained sensitivities were high and well above the
chance rate (d′ = 1′). Thus, the observed effect of indi-
vidual complexity levels might be more related to random
fluctuations at a ceiling of well detectable events than to
a systematic impact of a factor. Thus, while we conclude
that inpainting generally reduced the detection rate, more
insight can be gained from the analysis of severity ratings.

The right panel of Fig. 9 shows the ratings of artifact
severity when an artifact was detected. We have performed
a two-way ANOVA on the severity ratings with the factors
subject and complexity level5. The effect of the level was
significant (p = 0.038) indicating that across all subjects,
the severity of the artifacts increased with the complex-
ity. Despite its significance, the effect was small with all
average ratings for inpaintings detected as artifacts being
between “not disturbing” and “mildly disturbing”.

In summary, the network performance changed with the
complexity of the music. For the detection rates, the re-
sults were not conclusive on the effect of the complexity.
Nevertheless, the artifact severity ratings did vary per com-
plexity, being better at lower complexities and showing

5The amount of data did not allow us to include the interaction
between the subject and complexity level in that test
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that for every level of complexity the subjects found the
inpainting to be better than ‘mildly disturbing’.

4.7 Effect of the gap duration.
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Figure 10: Effect of the gap duration. Left: Sensitivity
representing ability to detect artifacts shown as statistics
(as in Fig. 8) and averages ±1 standard errors resulting
from a three-way ANOVA. Right: Ratings of artifact sever-
ity shown as statistics (black: real; grey: inpainted; blue:
click) and averages ±1 standard errors resulting from a
two-way ANOVA. Click: sounds distorted with a click. In-
paint: sounds distorted with a gap and then inpainted by
the GAN. S indicates a short gap of 375 ms, M a medium
gap of 750 ms and L a long gap of 1500 ms.

The left panel of Fig. 10 shows the statistics of sensitivity
to detect an artifact as a function of the length of the
gap on the third level of complexity (piano recordings). In
order to perform an statistical analysis, we have performed
a three-way ANOVA on the sensitivities with the factors
subject, length of the gap, and type of distortion (inpainted
and click) and their two-level interactions. The main effect
of distortion was significant (p < 0.001) indicating that
the inpainting significantly reduced the rate of perceived
artifacts. But in this case, the interaction between the
distortion and the length of the gap was not significant
(p = 0.4), indicating that the improvement did not depend
on the length of the gap. This is shown in that panel
by averages and ±1 standard errors as a function of the
complexity for the two types of distortion.

The right panel of Fig. 10 shows the ratings of artifact
severity when an artifact is detected. Their average val-
ues on the short inpainting (375 ms), medium inpainting
(750 ms) and long inpainting (1500 ms) were 1.56±0.24,
1.61±0.27, and 1.77±0.45, respectively. This indicates that
on average, our subjects rated the inpainting results be-
tween ”not disturbing” and ”mildly disturbing”, even for
the longer gaps of 1500 ms. We performed a two-way
ANOVA on the severity ratings with the factors subject
and length of the gap. The effect of the length of the gap
was not significant (p = 0.17), indicating that the ratings
did not change with the gap length. When performing

the same analysis on the full rating of the gaps (includ-
ing non-detected gaps, rated as 0), the effect remained not
significant (p = 0.07).

In summary, the network performance did not change
significantly for gaps between 375 ms and 1500 ms.

5 Conclusions and outlook

We introduced GACELA, a system for the restoration of
localized audio information in gaps with a duration ranging
between hundreds of milliseconds and seconds. GACELA
is based on a conditional GAN and represents a further de-
velopment based off our previous context encoder designed
for audio inpainting of gaps up to tens of milliseconds [7].
The improvements consider two aspects. First, GACELA
handles various time scales of audio information by con-
sidering five parallel discriminators with increasing resolu-
tion of receptive fields to prompt the generator’s output
to consider these time scales. Second, GACELA incorpo-
rates the inherent multi-modality of audio inpainting at
this gap-duration range by being conditioned not only on
the available information surrounding the gap but also on
the latent variable of the conditional GAN. This provides
the user with the option to fill-in the gap depending on
his/her needs.

GACELA was evaluated numerically and in listening
tests6. While under laboratory conditions our subjects
were able to detect most of the inpaintings, the artifact
severity was rated between “not disturbing” and “mildly
disturbing”. The detection rate and the severity ratings
depended on the complexity of the sounds defined by the
method of audio generation (MIDI vs. recordings) and
number of instruments. The inpainted segments were more
likely to be detected in sounds with larger complexity, with
an exception found for the simplest complexity level repre-
sented as MIDI-generated piano music generated from ar-
tificial MIDI scores. Interestingly, our subjects were most
sensitive to any type of corruption applied within this com-
plexity level, confounding this part of results. The inpaint-
ing quality of GACELA did not change significantly for in-
painting gaps with a duration ranging between 350 ms and
1500 ms. While it seems like GACELA could be applied
to even longer gaps, we assume that the inpainting quality
will drastically change at some gap duration. Also, as the
training time increases with the gap and context durations
– GACELA might require improvements in order to be able
to deal with significantly longer gaps.

The results of our evaluation show the urgency of low-
ering the artifact-detection rate in the future. This is a
very ambitious goal for long audio inpainting. The goal
is to design a system receiving a new piece of music and
generating a sound that is so similar that an attentive lis-
tener is not be able detect any artifacts. To this end, we

6We also encourage the interested reader to listen to the sam-
ples provided in https://andimarafioti.github.io/GACELA/ to get
a subjective impression on GACELA’s performance.
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expect future systems to better exploit auditory features
and musical structures. In GACELA, the auditory fea-
tures are represented by the compressed mel-spectrograms
(conditioning the generator and input for three discrimi-
nators). In the future, generators directly producing fea-
tures of an auditory space might provide improvements.
A promising avenue in this regard are Audlet frames, i.e.,
invertible TF systems adapted to perceptually-relevant fre-
quency scales [86]. GACELA aims to preserve the musi-
cal structure by relying on discriminators handling various
temporal scales separately. More explicit features such as
beat- and chord-tracking, incorporated to both the train-
ing of neural networks as well as their assessment might
further improve the inpainting quality in future systems.
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