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Contributions

1. Definition: Laplacian & Covariance: same eigenvectors

2. Power Spectrum Density (PSD): robust, scalable estimator
3. New optimization framework: provably optimal!
4. Applied to real data: it works!
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Motivation

Figure: Signal prediction. The red curve is more likely to occur than the
green curve because it respects the frequency statistics of the blue curve.

Why stationarity?

• Modeling graph processes
• Data adapted optimization priors
• Robust covariance estimation from few samples
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A reminder about graphs

• Weighted undirected graph: G = {V, E ,W }

• Laplacian L = D −W

• Extendable
1. Fourier based on A
2. normalized Laplacian
3. directed graphs

• U is the Fourier basis: L = UΛU∗

• We use: g(L) = Ug(Λ)U∗
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Stationarity for temporal signals

Definition (Time Wide-Sense Stationarity)
A signal is Time Wide-Sense Stationary (WSS) if

1. mx(t) = E
{
x(t)

}
= c ∈ R,

2. E
{

(x(t)−mx)(x(s)−mx)∗
}

= γx(t − s),
where γx is the autocorrelation.
The Power Spectral Density (PSD) is the Fourier transform of the
auto-correlation γx :

Sx(ω) =
1
2π

∫ +∞

−∞
γx(t)e−jωtdt. (1)
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The localization operator

For a continuous kernel R+ → R, the localization operator is
defined as:

Tig [n] =
N−1∑
`=0

g(λ`)u
∗
` [i ]u`[n] = (g(L))in . (2)

• Replace the translation operator for graph
• When g is smooth, then Tig is localized arround i

• Does not preserve the norm
• For a ring graph, we recover the translation (of the inverse
Fourier transform of the kernel)
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The localization operator - example

Figure: Top left: Mexican hat filter in the spectral domain
g(x) = 5x

λmax
exp

(
− 25x2

λ2
max

)
. The filter is localized around three different

vertices (highlighted by a black circle).

Figure: Top left: Mexican hat filter in the spectral domain
g(x) = 5x

λmax
exp

(
− 25x2

λ2
max

)
. The filter is localized around three different

vertices (highlighted by a black circle).
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Stationarity for graphs

Definition
A stochastic process x is Graph Wide-Sense Stationary ⇐⇒ :

1. E
{
x[i ]
}

= c ∈ R
2. its covariance matrix Σx[i , j ] = E

{
x̃[i ]x̃[j ])

}
is jointly

diagonalizable with the Laplacian (x̃ = x− E{x})

Σx[i , j ] = γx(L)ij = Tiγx(j) (3)

where γx is the PSD
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Examples

• White gaussian noise: graph stationary with a PSD σ2

• To generate a stationary process with PSD s2: just filter white
Guassian noise with s
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Classical Graph

Stationary with re-
spect to

Translation The localization operator

First Moment E
(
x[i ]
)

= mx = c ∈ R E
(
x[i ]
)

= mx = c ∈ R

Second Moment Σx[i, n] = E
(
x̃[i ])x̃∗[n]

)
= γx[t − s] Σx[i, n] = E

(
x̃[i ])x̃∗[n]

)
= γx(L)i,n

x̃ = x− mx Σx Toeplitz Σx diagonalizable with L

Wiener Khintchine Sx[`] = 1√
N

∑N
i=1 γx[n]e

−j2π n`
N γx(λ`) = (Γx)`,` =

(
U∗ΣxU

)
`,`

Result of filtering γg∗x[`] = g2(λ`) · γx[`] γg(L)x[`] = g2(λ`) · γx[`]

Table: Comparison between classical and graph stationarity. In the
classical case, we work with a N periodic discrete signal.
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PSD estimator from a single realization

Bartlett method:

• Compute the Short Time
Fourier Transform

• Take the amplitude squared
• Average over time
(with normalization and
interpolation if necessary)
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Scalable robust PSD estimator

PSD Estimation for graph
stationnary process

• Same method using only
graph filtering operations

• Special normalization:
irregular eigenvalues
positions

• Scale with the number of
edges! Figure: Left: PSD estimation on

a graph of 20′000 nodes with
K = 1 measurements.
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Wiener filters

• xo : stationary with PSD s2(λ`)

• h: graph filter
• y : measurements
• wn: noise of PSD n(λ`)

To recover xo from noisy y , use the Wiener filter:

g(λ`) =
h(λ`)s

2(λ`)

h2(λ`)s2(λ`) + n(λ`)
. (4)
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Optimization framework
• Measurements: y = Axo + wn

• xo : stationary with PSD s2(λ`)
• A: linear operator
• wn: noise of PSD n(λ`)

Classical "Tikhonov" approach

argmin
x
‖Ax − y‖22 + γx tLx . (5)

Wiener optimization

ẋ = argmin
x
‖Ax − y‖22 + ‖w(L)x‖22, (6)

where w(λ`) are the Fourier penalization weights.

w(λ`) =

∣∣∣∣∣
√
n(λ`)

s(λ`)

∣∣∣∣∣ =
1√

SNR(λ`)
.
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Wiener optimization - theorems

Theorem
If x is a sample of a Gaussian random process x ∼ N

(
0, s2(L)

)
and the noise is Gaussian i.i.d wn ∼ N

(
0, σ2), then Problem (6) is

a MAP estimator for x |y .

Theorem
If the operator A is diagonalizable with L, (i.e:
A = a(L) = Ua(Λ)U∗), then problem (6) is optimal with respect of
the weighting w in the sense that its solution minimizes the
mean square error:

E
(
‖e‖22

)
= E

(
‖ẋ − xo‖22

)
= E

(
N∑
i=1

(ẋ [i ]− xo [i ])2

)
.

Additionally, the solution can be computed by the application of the
corresponding Wiener filter.
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Evidence of stationarity: USPS
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USPS digits inpainting
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Conclusions
Why stationarity is great?

• Scalable robust covariance estimator for small number of
samples.

• Real data: close to stationary! faces, digits
• Can be included as prior in optimization problems

To go further:

• Paper code available:
https://lts2.epfl.ch/rrp/stationarity/

• Available in the GSPBox:

1 % 1) PSD estimation
2 psd = gsp_estimate_psd(G,X);
3 % 2) Prediction
4 S = gsp_wiener_inpainting(G, Y, Mask, psd, psd_noise);

• Problem: learning the graph
• Already extended to time evolving processes

Nathanaël Perraudin (EPFL) Stationary signal processing on graphs July 27, 2016 20 / 21
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Thank you

Any question(s)?

N. Perraudin and P. Vandergheynst (January 2016)
Stationary signal processing on graphs.
preprint arXiv:1601.02522.
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