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A context encoder for audio inpainting
Andrés Marafioti, Nathanaël Perraudin, Nicki Holighaus, and Piotr Majdak

Abstract—We study the ability of deep neural networks (DNNs)
to restore missing audio content based on its context, i.e., inpaint
audio gaps. We focus on a condition which has not received
much attention yet: gaps in the range of tens of milliseconds. We
propose a DNN structure that is provided with the signal sur-
rounding the gap in the form of time-frequency (TF) coefficients.
Two DNNs with either complex-valued TF coefficient output
or magnitude TF coefficient output were studied by separately
training them on inpainting two types of audio signals (music
and musical instruments) having 64-ms long gaps. The magnitude
DNN outperformed the complex-valued DNN in terms of signal-
to-noise ratios and objective difference grades. Although, for
instruments, a reference inpainting obtained through linear
predictive coding performed better in both metrics, it performed
worse than the magnitude DNN for music. This demonstrates
the potential of the magnitude DNN, in particular for inpainting
signals that are more complex than single instrument sounds.

I. INTRODUCTION

Locally degraded or even lost information is encountered in
various audio processing tasks. Some examples are corrupted
audio files, lost information in audio transmission (referred to
as packet-loss in the context of voice-over-IP transmission),
and audio signals locally contaminated by noise. Restoration
of lost information in audio has been referred to as audio
inpainting [1], audio inter-/extrapolation [2], [3], or waveform
substitution [4]. Reconstruction is usually aimed at providing a
coherent and meaningful information while preventing audible
artifacts so that the listener remains unaware of any occurred
problem. Successful algorithms are limited to deal with a
particular class of audio signals [5], or they focus on a specific
duration of the problematic signal parts [6], and/or they exploit
a-priori information about the problem [7].

In this work, we explore a new machine-learning algorithm
with respect to the reconstruction of lost parts of audio signals,
i.e., gaps. From all possible classes of audio signals, we limit
the reconstruction to instrumental music, i.e., mix of sounds
from musical instruments organized in time. We focus on
gaps of medium durations, that is, in the range of tens of
milliseconds. We assume that gaps are separated in time, such
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that the local audio information surrounding the gap, namely,
the context, is reliable and can be exploited.

The proposed algorithm is based on an unsupervised
feature-learning algorithm driven by context-based sample
prediction. It relies on a DNNs with convolutional and fully
connected layers (FCLs) trained to generate TF representations
of sounds being conditioned on contextual TF information.
We call the algorithm context encoder, as introduced for
images [8] in analogy to auto encoders [9]. Our context
encoder aims at studying the general ability of DNNs to
accurately inpaint audio in the range of tens of milliseconds
from limited but reliable context in order to determine factors
with the largest potential for future improvement and details
requiring a more sophisticated method.

A. Related deep-learning techniques

Deep learning excels in classification, regression, and
anomaly detection tasks [9] and it has also shown good results
in generative modeling with techniques such as variational
auto encoders [10] and generative adversarial networks [11].
Unfortunately, for audio synthesis only the latter has been
studied, applying it to generate snippets of sound [12]–[14].
In order to obtain meaningful results, state-of-the-art audio
synthesis requires sophisticated networks [15], [16]. While
these approaches directly predict audio samples based on the
preceding samples, in the speech-synthesis field, synthesis of
audio in domains other than time such as spectrograms [17],
and mel-spectrograms [18], [19] have been proposed. In the
field of speech transmission, DNNs have been used to achieve
packet loss concealment [20].

The synthesis of musical audio signals using deep learning,
however, is even more challenging [21]. A music signal is
comprised of complex sequences ranging from short-term
structures (any periodicity in the waveform) to long-term struc-
tures (like figures, motifs, or sections). In order to simplify the
problem brought by long-range dependencies, music synthesis
in multiple steps has been proposed including an intermediate
symbolic representation like MIDI sequences [22], and fea-
tures of a parametric vocoder [23].

While these contributions provide insights on the design of
a neural network for audio synthesis, none of them addresses
conditions in which some audio information has been lost, but
the surrounding context is available.

B. Related audio-inpainting algorithms

The term ”audio inpainting” was coined by Adler et al. to
describe a large class of inverse problems in audio processing,
while focussing their own study on the restoration of gaps in
audio signals [1]. The general assumption for audio inpainting
is that audio is represented in some domain as data and
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some chunks of that data are corrupted yielding gaps in the
representation.

The number and duration of the gaps as well as the type
of corruption is manifold. For example, in declicking and de-
clipping, corruptions may be frequent, but mostly confined to
disconnected time-segments of only few milliseconds duration
or less. We refer to inpainting such gaps as inpainting of
short gaps. On the other hand, gaps on a scale of hundreds of
milliseconds or even seconds may happen, e.g., when reading
partially damaged physical media, in live music recordings,
when unwanted noise originating from the audience needs
to be removed, or in audio transmission with a total loss of
the connection between transmitter and receiver lasting for
seconds. We refer to inpainting such gaps as inpainting long
gaps.

In contrast, we define medium gaps as those with tens of
milliseconds duration, a scale on which the non-stationary
characteristic of audio already becomes important, but the
extrapolation of the missing information from short context
surrounding the gap still seems feasible. Medium gaps may
arise as a consequence of packet loss in audio transmission [5]
or when short interruption happens while reading audio from
partially damaged physical media. Interestingly, not much has
been done for audio inpainting of medium gaps.

In contrast, for inpainting short gaps, various solutions have
been proposed. [1] proposed a framework based on orthogonal
matching pursuit (OMP), which has inspired a considerable
amount of research exploiting TF sparsity [24]–[27] or struc-
tured sparsity [28]–[30]. Being tempted to extend these works
to medium gap durations, one gets disappointed quite soon
because for increasing gap durations (from the originally
targeted of 10 ms to medium gap durations of around 50 ms),
the reconstruction quality substantially decreases, see Fig. 1
in [27]. The degradation originates in the combination of the
TF representation and the assumption of sparsity: TF sparse
methods are ill-suited to restore gaps that approach or exceed
the duration of the TF analysis and synthesis windows. This
limitation is also valid, if less severe, for structured TF sparsity,
rendering the sparsity-based methods as unsatisfactory for
inpainting medium duration gaps. TF domain is popular for
inpainting short gaps, e.g., interpolation of audio based on a
Gabor regression model [6], or nonnegative matrix and tensor
factorization [31]–[33]. More recently, a powerful framework
has been proposed for various audio inverse problems [34] in-
cluding time-domain audio inpainting, source separation [35],
and declipping [36] even in a multichannel scenario [37]. All
of these systems require valid audio data within a time-domain
window, cf. [36], which makes them perfect for inpainting
short gaps, but unsatisfactory for medium gap durations.

On the other hand, for inpainting long gaps, recent methods
leverage repetition and determine the most promising reliable
segment from uncorrupted portions of the input signal [5],
[7]. Restoration is then achieved by inserting the determined
segment into the gaps. These methods do not claim to restore
the missing gap perfectly, they aim at plausibility. For exam-
ple, a method based on MFCC feature similarity has been
proposed for packet loss concealment [5]. It explicitly tar-
gets a perceptually plausible restoration. Similarly, exemplar-

based inpainting was proposed based on a graph encoding
spectro-temporal similarities within an audio signal [7]. In
both studies, gap durations were beyond several hundreds of
milliseconds and their reconstruction needed to be evaluated
in psychoacoustic experiments. Other examples for similar
methods are [38]–[41]. While all these methods might be in
general capable of inpainting gaps of medium duration, the
target of the inpainting is always plausible instead of accurate
reconstructions.

When restricting the inpainting to simple sounds such as
musical instruments, linear prediction coding (LPC) [42] can
be applied even for medium gap durations. While LPC may
sound antiquated, it is particularly suitable for the instrument
sounds as it models the way the sound is created by many
instruments, i.e., by means of weighted sum of resonances.
From the algorithmic perspective, LPC is simple but recursive,
thus, allows to synthesize complex sound signals at a low com-
putational power. Initially proposed for inpainting short bursts
of lost samples [43], LPC-based inpainting algorithms model
the signal as an acoustic source filtered by an all-pole filter.
The model parameters are derived from the context and the
missing signal part is synthesized by extrapolating the context
into the gap. LPC-based methods work well for inpainting
gaps for durations from 5 to 100 ms [3], [44]. LPC-based
methods are particularly good in inpainting gaps consisting
of many consecutive missing audio samples surrounded by
reliable context [44]. In our experiments for medium gaps,
the LPC-based algorithm [44] performed better than the latests
reports on OMP-based algorithms [27]. As it seems, when it
comes to inpainting medium gaps, the LPC-based method [44]
seems to be the choice for a reference method.

The performance of LPC-based methods relies on the
underlying assumption of signal stationarity. Deep-learning
techniques, on the other hand, promise a more generalized
signal representation. A combination of TF representation
with deep-learning techniques may provide better inpainting
whenever the lost data cannot be predicted by LPC. Thus,
here, we propose to link deep-learning techniques with audio
inpainting.

II. CONTEXT ENCODER

Our end-to-end system is presented in Fig. 1. We consider
the audio signal s consisting of the gap sg and the context
signals before and after the gap, sb and sa, respectively (Fig.
1a). Given that convolutional networks applied directly on
time-domain signals would require extremely large training
datasets [45], we provide the network with TF coefficients. The
TF coefficients are obtained from an invertible representation,
namely, a redundant short-time Fourier transform (STFT) [46],
[47]. Our network, inspired by the context encoder for image
inpainting [8], is an encoder-decoder pipeline fed with TF
coefficients of the context information, Sb and Sa (Fig. 1b).
In order to study the general ability of DNNs to accurately
inpaint audio in the range of tens of milliseconds, our network
is comprised only of standard widely-used building blocks,
i.e., convolutional layers, FCLs, and rectified linear units
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Fig. 1. The end-to-end system. a) Audio signal in the time domain, sg is the gap. b) Audio signal in the TF domain, Sb and Sa is the context before
and after the gap, respectively. c) Reconstructed gap Sg

′ in the TF domain. d) Reconstruction Sg
′ merged with the stripped context Sb

′ and Sa
′ in the TF

domain. e) Reconstructed signal in the time domain, including the inpainted gap, sg ′.

(ReLUs).1 The network predicts TF coefficients of the gap
Sg
′ (Fig. 1c), which are then merged with the stripped TF

coefficients of the context, (Fig. 1d), in order to synthesize
the reconstruction in the time domain, s′ (Fig. 1e).

To study the effect of the phase of the reconstructed TF
representations, we considered two equivalent networks with
different outputs: (a) complex network, i.e., a network directly
reconstructing the complex-valued TF coefficients which are
then applied to the inverse STFT for the synthesis of the
time-domain audio signal, and (b) magnitude network, i.e., a
network reconstructing the magnitude coefficients only, which
are then applied to a phase-reconstruction algorithm in order to
obtain complex-valued TF coefficients required for the signal
synthesis. From accurate TF magnitude information, phaseless
reconstruction methods such as [48]–[50] are known to provide
perceptually close, often indiscernible, reconstruction despite
the resulting time-domain waveforms usually being rather
different.

The software was implemented in Tensorflow [51] and is
publicly available.2

A. Pre-processing stage
We use STFT, which enables a robust synthesis of the time-

domain signal from the reconstructed TF coefficients.3 The
STFT is determined by the analysis window, hop size a, and
the number of frequency channels M . In our study, the analysis
window was an appropriately normalized Hann window of
length M and a was M/4, enabling perfect reconstruction by
an inverse STFT with the same parameters and window.

The STFT is applied to the signal s ∈ RL (containing L
samples of audio) resulting in S, both of which consist of the
context before and after the gap (containing Lc samples each)
and the gap (containing Lg samples),

s =

 sb
0Lg×1
sa

 and S =
(
Sb,0(M/2+1)×Ng

, Sa

)
,

1Before fixing the network structure described in the remainder of this
section, we experimented with different standard architectures, depths, and
kernel shapes, out of which the current structure showed the most promise.

2www.github.com/andimarafioti/audioContextEncoder
3This is in contrast to machine-learning methods solving classification tasks,

in which such a synthesis is not targeted.

where sb, sa ∈ RLc , Ng = (Lg −M)/a + 1, and Sb, Sa ∈
C(M/2+1)×Nc with Nc = Lc/a. 0R×C is a matrix with R
rows and C columns containing only zeros.

Then, Sb and Sa are split into real and imaginary parts,
resulting in four channels SRe

b , SIm
b , SRe

a , SIm
a , which are fed

to the network.

B. Encoder

For the architecture of the encoder, [8] used the first five
layers from [52] to process images. To adapt the design of
our network to process TF coefficients, our encoder consists
of six regular convolutional layers sequentially connected
via ReLUs, after which batch normalization [53] is applied.
Instead of using classical squared filters, we used rectangular
filters to give the encoder more capacity on frequency over
time in the TF representation. For M = 512, the resulting
encoder architecture is shown in Figure 2.

The inputs SRe
b , SIm

b , SRe
a , SIm

a of the context information
are treated as separate channels, thus, the network is required
to learn how the channels interact and how to mix them.
Because the encoder is comprised of only convolutional layers,
the information can not reliably propagate from one end
of the feature map to another. This is a consequence of
convolutional layers connecting all the feature maps together,
but never directly connecting all locations within a specific
feature map [8].

C. Decoder

Similar to [8], the decoder begins with a FCL and a
ReLU nonlinearity in order to spread the encoder’s information
among the channels. FCLs are computationally expensive; in
our case it contains 38% of all the parameters of the network.
All the subsequent layers are (de-)convolutional and, as for the
encoder, connected by ReLUs with batch normalization. The
first three layers use squared filters, the remaining two layers
use rectangular filters to give the decoder more capacity on
frequency over time in the output TF representation. Figure 3
shows the decoder architecture for M = 512 and a gap size
Lg = 1024 samples.
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Fig. 2. The encoder is a convolutional network with six layers followed by reshaping. The four channel TF input is encoded into a matrix of size of 2048.
Gray rectangles represent the convolution filters with size expressed as (height, width). White cubes represent the signal.

The decoder does not only output the gap content, but
also the TF coefficients connecting the gap with the context.
Thus, the decoder output Sg

′ is larger than the original
gap by M/a − 1 columns before and after the gap each,
i.e., Sg

′ ∈ C(M/2+1)×((Lg+M)/a−1). In our example with
Lg = 1024, M = 512 and a = M/4, shown in Fig. 3, every
decoder output channel is of size 257× 11.

Note that the final layer depends on the network. For the
complex network, the final layer has two outputs, correspond-
ing to the real and imaginary part of the complex-valued TF
coefficients. For the magnitude network, the final layer has a
single output for the magnitude TF coefficients. We denote the
output TF coefficients as Sg

′.

D. Post-processing stage

The post-processing stage synthesizes the audio signal of the
context and the inpainted gap. To this end, (M/a− 1) coeffi-
cients of the context extending into the gap are removed, yield-
ing the stripped context, Sb

′, Sa
′ ∈ C(M/2+1)×(Nc−M/a+1).

Then, the reconstructed TF coefficients from the decoder, S′g ,
are inserted between the TF coefficient of the stripped context,
Sb
′ and Sa

′, yielding the sequence S′ = (Sb
′, Sg

′, Sa
′), having

the same size as S. Stripping the context and insertion of the
reconstruction directly in the TF domain prevents transitional
artifacts between the context and the gap because synthesis by
the inverse STFT introduces an inherent cross-fading.

For the complex network, the decoder output represents the
real and imaginary parts of complex-valued TF coefficients
Sg
′ and the inverse STFT can be directly applied yielding s′.
For the magnitude network, the decoder output represents

the magnitudes of the TF coefficients and the missing phase
information needs to be estimated separately. First, the phase
gradient heap integration algorithm proposed in [54] was
applied to the magnitude coefficients produced by the decoder
in order to obtain an initial estimation of the TF phase. Then,
this estimation was refined by applying 100 iterations of the
fast Griffin-Lim algorithm [48], [49]. We modified the version
implemented in the Phase Retrieval Toolbox Library [55]

to use the valid phase from the context at every iteration.4

The resulting complex-valued TF coefficients Sg
′ were then

transformed into a time-domain signal s′ by inverse STFT.

E. Loss Function

The network training is based on the minimization of the
total loss of the reconstruction. To this end, the reconstruction
loss is computed by comparing the original gap TF coefficients
Sg with the reconstructed gap TF coefficients Sg

′. Targeting
an accurate reconstruction of the lost information, we optimize
an adapted `2-based loss instead of mixing the `2-loss with
an adversarial term [8]. For this type of network [56], the
comparison can be done on the basis of the squared `2-norm of
the difference between Sg and Sg

′, commonly known as mean
squared error (MSE). The MSE would depend on the total
energy of Sg , putting more weight on signals containing more
energy. In order to avoid that, the normalized mean squared
error (NMSE) can be used, which normalizes MSE by the
energy of Sg . Compared to MSE, NMSE puts more weight
on small errors when the energy of Sg is small. In practice,
however, minor deviations from Sg are insignificant regardless
of the content of Sg , and NMSE would be too sensitive.

Therefore, for the calculation of the loss function, we use
a weighted mix between MSE and NMSE,

F(Sg, Sg
′) =

‖Sg − Sg
′‖2

c−1 + ‖Sg‖2
, (1)

where the constant c > 0 controls the incorporated compen-
sation for small amplitude. In our experiments, c = 5 yielded
good results.

Finally, as proposed in [57], the total loss is the sum of the
loss function and a regularization term controlling the trainable
weights in terms of their `2-norm:

T = F (Sg, Sg
′) +

λ

2

∑
i

w2
i , (2)

with wi being weights of the network and λ being the
regularization parameter, here, set to 0.01. The numerical

4The combination of these two algorithms provided consistently better
results than separate application of either.
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Fig. 3. The decoder architecture for the complex and magnitude network producing one and two channels of TF coefficients, respectively. All other conventions
as in Figure 2.

optimizations were done using the stochastic gradient descent
solver ADAM [58].

III. EVALUATION

The main objective of the evaluation was to investigate our
networks’ ability to adapt to audio signals. The evaluation
is based on a comparison of the inpainting results to those
obtained for the reference method, i.e., LPC-based extrapo-
lation [44]. The inpainting quality was evaluated by means
of objective difference grades (ODGs, [59]) and signal-to-
noise ratios (SNRs) applied to the time-domain waveforms
and magnitude spectrograms.

We considered two classes of audio signals: instrument
sounds and music. The respective networks were trained on
the targeted signal class, with an assumed gap size of 64 ms.
Reconstruction was evaluated on the trained signal class and
other signals for 64 ms gaps.

Additionally, we evaluated the effect of the gap duration by
evaluating the magnitude network for 48 ms gaps.

A. Parameters

The sampling rate was 16 kHz. We considered audio
segments with a duration of 320 ms, which corresponds to
L = 5120 samples. For the STFT, the size of the window
and the number of frequency channels M were fixed to
512 samples, and a was 128 samples.

Each segment was separated in a gap of 64 ms correspond-
ing to Lg = 1024 of the central part of a segment and the
context of twice of 128 ms, corresponding to Lc = 2048
samples. Consequently, Nc was 16, the input to the encoder
was Sb, Sa ∈ C257×16, and the output of the decoder was
Sg
′ ∈ C257×11.

B. Datasets

The dataset representing musical instruments was derived
from the NSynth dataset [60]. NSynth is an audio dataset
containing 305,979 musical notes from 1,006 instruments,
each with a unique pitch, timbre, and envelope. Each example
is four seconds long, monophonic, and sampled at 16 kHz.

The dataset representing music was derived from the free
music archive (FMA, [61]). The FMA is an open and easily

accessible dataset, usually used for evaluating tasks in musical
information retrieval. We used the small version of the FMA
comprised of 8,000 30-s segments of songs with eight balanced
genres sampled at 44.1 kHz. We resampled each segment to
the sampling rate of 16 kHz.

The original segments in the two datasets were processed
to fit the evaluation parameters. First, for each example the
silence at the beginning and end was removed. Second, from
each example, pieces of the duration of 320 ms were copied,
starting with the first segment at the beginning of a segment,
continuing with further segments with a shift of 32 ms. Thus,
each example yielded multiple overlapping segments s. Then,
the energy of the segments was evaluated and the ones that
were completely silent were removed. Note that for a gap of
64 ms, the segment can be considered as a 3-tuple by labeling
the first 128 ms as the context before the gap sb, the subsequent
64 ms as the gap sg , and the last 128 ms as the context after
the gap sa.

In order to avoid overfitting, the datasets were split into
training, validation, and testing sets before segmenting them.
For the instruments, we used the splitting proposed by [60].
The music dataset, was split into 70%, 20% and 10%, re-
spectively. The statistics of the resulting sets are presented in
Table I.

Count Percentage
Instruments training 19.4M 94.1
Instruments validation 0.9M 4.4
Instruments testing 0.3M 1.5
Music training 5.2M 70.0
Music validation 1.5M 20.0
Music testing 0.7M 10.0

TABLE I
SUBDIVISION OF THE DATASETS USED IN THE EVALUATION. COUNT IS

THE AMOUNT OF EXAMPLES. PERCENTAGE IS CALCULATED WITH
RESPECT TO THE FULL DATASET.

C. Evaluation metrics

The first metric was the SNR in dB,

SNR(x, x′) = 10 log
‖x‖2

‖x− x′‖2
(3)
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calculated separately for each segment of a testing dataset.
Then, we averaged SNRs across all segments of a testing
dataset.

For the evaluation in the time domain, we used
SNR(sg, sg

′), which is the SNR calculated on the gaps of
the actual and reconstructed signals, sg and sg ′, respectively.
We refer to the average of this metric across all segments to
as SNR in the time domain (SNRTD).

The SNR was also calculated on the magnitude spectro-
grams in order to accommodate for perceptually less-relevant
phase changes. We calculated SNR(|Sg|, |Srg|), where Srg

represents the central 5 frames of the STFT computed from
the restored signal s′ and thus represents the restoration of
the gap. In other words, we compute the SNR between the
spectrograms of the original signal and the restored signal in
the region of the gap. We refer to the average of this metric
(across all segments of a testing dataset) to as SNRMS, where
MS stands for magnitude spectrogram. Note that SNRMS is
directly related to the spectral convergence proposed in [62].

Additionally, we computed the ODGs, which correspond to
the subjective difference grade used in human-based audio test
and is derived from the perceptual evaluation of audio quality
(PEAQ, [59]). ODG range from 0 to−4 with the interpretation
shown in Tab. II. We calculated the ODGs on signals of 2-s
duration, with the inpainted gap beginning at 0.5-s. We used
the algorithm implemented in [63].

ODG Impairment
0 Imperceptible
-1 Perceptible, but not annoying
-2 Slightly annoying
-3 Annoying
-4 Very annoying

TABLE II
INTERPRETATION OF ODGS.

D. Training

Both complex and magnitude networks were trained for
the instrument and music dataset, resulting in four trained
networks. Each training started with the learning rate of
10−3. In the case of the magnitude network, the reconstructed
phase was not considered in the training. Every 2000 steps,
the training progress was monitored. To this end, signals
from the validation dataset were inpainted and the weighted
NMSE was calculated between the predicted and the actual
TF coefficients of the gap. When converging, which usually
happened after approximately 600k steps, the learning rate was
reduced to 10−4 and the training was continued by additional
200k steps.5 Table III shows the SNRMS calculated for the
training, validation, and testing datasets. The similar values
across subsets indicate no evidence for an overfitting.

5We also considered training on the instrument training dataset (800k steps)
followed by a refinement with the music training dataset (300k steps). While
it did not show substantial differences to the training performed on music
only, a pre-trained network on music with a subsequent refinement to genre
may show improvements for that genre.

Music Instruments
Train Valid Test Train Valid Test

Mag Mean 7.6 7.8 7.8 22.1 21.9 21.9
Std 4.2 4.0 4.3 9.9 10.2 10.0

Complex Mean 4.9 5.1 5.4 17.8 18.3 18.2
Std 4.0 4.2 4.5 10.5 10.3 10.1

TABLE III
OVERFITTING CHECK BY MEANS OF SNRMS (IN DB) CALCULATED

BETWEEN GENERATED AND ORIGINAL TF-COEFFICIENTS WITHOUT THE
SYNTHESIS STEP FOR 64 MS GAPS.

E. Reference method

We compared our results to those obtained with a ref-
erence method based on LPC. For the implementation, we
followed [44], especially [44, Section 5.3]. In detail, the
context signals sb and sa were extrapolated onto the gap
sg by computing their impulse responses and using them as
prediction filters for a classical linear predictor. The impulse
responses were obtained using Burg’s method [64] and were
fixed to have 1000 coefficients according to [2] and [65]. Their
duration was the same as that for our context encoder in order
to provide the same amount of context information. The two
extrapolations were mixed with the squared-cosine weighting
function. Our implementation of the LPC extrapolation is
available online6.

Then, we evaluated the results produced by the reference
method in the same way as we evaluated the results produced
by the networks.

IV. RESULTS AND DISCUSSION

A. Ability to adapt to the training material

As a general rule, a trained neural network should perform
well on the distribution that it learned from. As the instrument
dataset is made of discrete in-tune instrument notes, each note
can be considered as a sum of discrete frequencies arranged
in time. If our network was able to adapt to the instrument
sounds then it should perform on these frequencies better than
on others.

To evaluate this, we probed our trained networks with
stationary tones of various frequencies. The pure tones were
directly synthesized as sine oscillations with a fixed frequency.
The probes were generated within a logarithmic frequency
range from 20 Hz to 8 kHz, linear phase shift range from
0 to π, and linear amplitude range from 0.1 to 1. The duration
was 320 ms corresponding to 5120 samples at the sampling
rate of 16 kHz.

Figure 4 shows the SNRMS of the reconstruction obtained
with the complex network. The abscissa shows notes, i.e.,
frequencies corresponding to the Standard pitch (with A corre-
sponding to the frequency of 440 Hz). For the network trained
on the instruments, the SNRMS was large in the proximity
of notes and decreased by more than 15 dB for frequencies
between the notes. This shows that the network was able
to better predict signals corresponding to the trained notes,
indicating a good adaptation to the trained material.

Music contains more broadband sounds such as drums,
breathing, tone glides, i.e., sounds with non-significant energy

6www.github.com/andimarafioti/audioContextEncoder
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Fig. 4. SNRMS for reconstruction of pure tones with the complex network
trained on the instrument (black) and music (grey) dataset. SNRMS are shown
as a function of musical notes corresponding to the Standard pitch, i.e., the
note A4 corresponds to the frequency of 440 Hz.

at frequencies between the Standard pitch being non-stationary
even within the tested 320 ms. A network trained on music
is expected to be less sensitive to predictions performed on
Standard pitch only. Figure 4 shows the SNRMS obtained for
the reconstruction of pure tones with the network trained on
the music. The SNRMS fluctuations were smaller than those
from the network trained on the instruments. This further
supports our conclusion about the good ability of our network
structure to adapt to various training materials.

B. Effect of the network type

The difference between the magnitude and complex net-
works both trained on instruments can be anticipated from
the Figure 5, which shows the SNRMS of the reconstructions
of pure tones. As an average over frequency, the magnitude
network provided an SNRMS of 10.2 dB larger than that
of the complex network. For the magnitude network, the
SNRMS was more or less similar for frequencies up to 200
Hz and decreased with frequency. For the complex network,
the SNRMS decrease started already at approximately 100 Hz
and was much steeper than that of the magnitude network.
Above the frequency of approximately 4 kHz, the complex
network provided an extremely poor SNRMS of 5 dB or less,
indicating that the complex network had problems reconstruct-
ing the signals at higher frequencies. This is in line with [66],
where neural networks were trained to reconstruct phases of
amplitude spectrograms and their predictions were also poorer
for higher frequencies.

Unfortunately, the problem of poor high-frequency recon-
struction also persisted when predicting instrument sounds
instead of pure tones. Figure 6 shows the spectrogram of
an original sound from the instrument testing set (left panel)
and of its reconstruction obtained from the complex network
(center panel). The reconstruction clearly fails at frequencies
higher than 4 kHz.

In order to further compare between the two network
types, reconstructions of the testing datasets were performed.
Table IV shows the SNRMS and ODG of those predictions.
The magnitude network resulted in consistently better results
with an SNRMS difference of 2.3 dB and 3.5 dB when tested
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Fig. 5. SNRMS for reconstruction of pure tones with the complex (black)
and magnitude (grey) networks both trained to the instruments database. The
thicker lines show averages over 25 surrounding frequency points.
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Fig. 6. Magnitude spectrograms (in dB) of an exemplary signal reconstruction.
Left: Original signal. Center: Reconstruction by the complex network. Right:
Reconstruction by the LPC-based method. The gap was the area between the
two red lines.

on music and instruments, respectively. Similarly, ODGs favor
the magnitude network, although to a smaller extent. The
comparison may appear flawed because the magnitude network
has to predict only half of the features to be predicted by
the complex network, at almost the same number of neurons.
However, even doubling the size of the complex network
would not yield significantly better predictions, as the link
between the size of a DNN and its performance is not
proportional [67].

In addition to the improvement in SNRMS and ODG of the
magnitude network over the complex network, the complex
network predictions were observed to often be corrupted by
clearly audible broadband noise7.

Music Instruments
Mag Complex LPC Mag Complex LPC

Mean SNRMS 7.7 5.4 6.3 22.4 18.5 30.5
Std SNRMS 4.3 4.5 5.1 10.7 10.2 18.9
Mean ODG -0.8 -1.0 -0.8 -1.6 -1.8 -0.3
Std ODG 0.4 0.2 0.2 1.0 0.9 0.3

TABLE IV
SNRMS (IN DB) AND ODGS OF RECONSTRUCTIONS OF 64 MS GAPS FOR

THE COMPLEX AND MAGNITUDE NETWORKS, AS WELL AS FOR THE
LPC-BASED METHOD.

7visit https://andimarafioti.github.io/audioContextEncoder/ for audio exam-
ples.
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C. Comparison to the reference method

Table IV provides the SNRMS and ODGs for the LPC-
based reference reconstruction method. When tested on music,
on average, our magnitude network outperformed the LPC-
based method in terms of SNRMS by 1.4 dB. When tested on
instruments, our magnitude network underperformed the LPC
by 8.6 dB, which was also reflected in poorer ODGs. Both
SNRs and ODGs reveal a consistent picture. The LPC-based
method seems to better inpaint instruments. The CE seems
to be better or equivalent for inpainting music. This can be
attributed to the better compliance of the instruments with the
LPC, and a better universality of our CE.

In order to look more deeply into the differences between
the two inpainting methods, we compared their abilities to
inpaint frequency sweeps. A sweep represents a controlled
frequency modulation, which violates the assumptions for the
LPC and is not present in the data the CE was trained on. The
signal consisted of a sum of five linear frequency sweeps with
a 320-ms duration each, starting frequencies of 500, 2000,
3500, 5000 and 6500 Hz, and bandwidth of 500 Hz. Figure 7
shows the signal and the inpainting results. The gap inpainted
by the LPC method (right panel) shows constant frequencies
expanding into the gap causing a discontinuity in the gap’s
center. In contrast, the gap inpainted by the magnitude network
(center panel) follows the frequency changes better at the price
of noise appearing between the sweeps.

Other interesting examples are shown in Figure 8. The
top row shows an example in which the magnitude network
outperformed the LPC-based method. In this case, the signal is
comprised of steady harmonic tones in the left side context and
a broadband sound in the right side context. While the LPC-
based method extrapolated the broadband noise into the gap,
the magnitude network was able to foresee the transition from
the steady sounds to the broadband burst, yielding a prediction
much closer to the original gap, with a 13 dB larger SNRMS
than that from the LPC-based method.

On the other hand, the magnitude network did not always
outperform the LPC-based method. The bottom row of Fig. 8
shows spectrograms of such an example. This signal had stable
sounds in the gap, which were well-suited for an extrapolation,
but rather complex to be perfectly reconstructed by the magni-
tude network. Thus, the LPC-based method outperformed the
magnitude network yielding a 9 dB larger SNRMS.
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Fig. 7. Log-magnitude spectrograms (in dB) of an exponential frequency
sweep. Left: Original signal. Center: Reconstruction by the magnitude net-
work. Right: Reconstruction by the LPC-based method.
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Fig. 8. Magnitude spectrograms (in dB) of exemplary signal reconstructions.
Left: Original signal. Center: Reconstruction by the magnitude network. Right:
Reconstruction by the LPC-based reference method. Top: Example with the
magnitude network outperforming the reference by an SNRMS of 13 dB.
Bottom: Example with the magnitude network underperforming the reference
by an SNRMS of 9 dB.

Finally, Table V presents the SNRTD of reconstructions of
the instrument and music. Note that the SNRTD provided for
the magnitude network is for the sake of completeness only.
The SNRTD metric is highly sensitive to phase differences,
which do not necessarily lead to perceptual differences and,
for the magnitude network, is reconstructed with an accuracy
of up to a constant phase shift. Thus, SNRTD can remain low
even in cases of very good reconstructions. Hence, here, we
compare the performance of the complex network with that of
the LPC-based method only.

For the music, on average, the complex network outper-
formed the LPC-based method providing a 0.3 dB larger
SNRTD. Given the large standard deviation, we performed a
pair t-test on the SNRTD which showed that the difference
was statistically significant (p < 0.001). For the instruments,
on average, the LPC-based reconstruction outperformed our
network by 12 dB.

The excellent performance of the LPC-based method re-
constructing instruments can be explained by the assumptions
behind the LPC well-fitting to the single-note instrument
sounds. These sounds usually consist of harmonics stable on a
short-time scale. LPC extrapolates these harmonics preserving
the spectral envelope of the signal. Nevertheless, the mag-
nitude network yielded an SNRMS of 22.4 dB, on average,
demonstrating a good ability to reconstruct instrument sounds.

When applied on music, the performance in terms of
SNRMS of both methods was much poorer, with our network
performing slightly but statistically significantly better than the
LPC-based method. The better performance of our network
can be explained by its ability to adapt to transient sounds
and modulations in frequencies, sound properties that the LPC-
based method is not suited to handle.
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The gap duration of 64 ms is close to those tested in [27]
when comparing various OMP methods. For 50 ms, their ap-
proaches showed SNRTD below 2 dB and ODG values around
-3 (see their Fig. 1 and 4). The LPC-based method showed
average SNRTD of 3.8 dB and ODGs of -0.8. This confirms
our assumption that for the studied range, the LPC is better
suited than the sparsity-based audio inpainting techniques.

Music Instruments
Complex Mag LPC Complex Mag LPC

Mean 3.8 1.1 3.5 16.0 14.6 28.0
Std 4.1 3.9 5.0 9.7 10.8 19.1

TABLE V
SNRTD (IN DB) OF RECONSTRUCTIONS OF 64 MS GAPS FOR THE

COMPLEX AND MAGNITUDE NETWORKS, AS WELL AS FOR THE
LPC-BASED METHOD.

D. Effect of the gap duration

The proposed network structure can be trained with different
contexts and gap durations. For problems of varying gap
duration, a network trained to the particular gap duration might
appear optimal. However, training takes time, and it might be
simpler to train a network to single gap duration and use it to
reconstruct any shorter gap as well.

In order to test this idea, we introduced gaps of 48 ms
(corresponding to Lg = 768 samples) in our testing datasets.
These gaps were then reconstructed by the magnitude network
trained for 64 ms gaps. As this network outputs, at reconstruc-
tion time, a solution for a gap of length 64-ms, the 48-ms gaps
needs to be enlarged. We tested three approaches to enlarge
them: by discarding 16 ms forwards, 16 ms backwards, or
8 ms forwards and 8 ms backwards (centered).

Table VI shows SNRMS obtained from averaging the recon-
structions of the three types of gap enlargements. Also, the
corresponding SNRMS for the LPC-based method are shown.
The results are similar to those obtained for larger gaps:
for the instruments, the LPC-based method outperformed our
network; for the music, our network outperformed the LPC-
based method.

Music Instruments
Ours LPC Ours LPC

Mean 8.0 6.9 21.8 33.2
Std 4.6 5.5 11.8 20.1

TABLE VI
SNRMS (IN DB) OF RECONSTRUCTIONS OF 48 MS GAPS FOR THE

MAGNITUDE NETWORK AND THE LPC-BASED METHOD.

V. CONCLUSIONS AND OUTLOOK

We proposed a neural network architecture for inpainting
medium gaps of audio. The study aims at showing general
abilities of a neural network working on TF coefficients as a
context encoder. The proposed network was able to adapt to
the particular frequencies provided by the training material.
It was able to reconstruct frequency modulations better than
the LPC-based reference method and it was able to inpaint
gaps shorter than the trained ones. For the reconstruction
of complex signals like music, our network was able to

outperform the LPC-based reference method, in terms SNR
calculated on magnitude spectrograms, and both methods were
rated equally with ODG between imperceptible and perceptible
but not annoying. LPC yielded better results when applied
on more simple signals like instrument sounds. In general,
our results suggest that standard DNN components and a
moderately sized network can be applied to form audio-
inpainting models, offering a number of angles for future
improvement.

For example, we have analyzed two types of networks. The
complex network works directly on the complex-valued TF
coefficients. The magnitude network provides only magnitudes
of TF coefficients as output and relies on a subsequent
phase reconstruction. We observed clear improvement of the
magnitude network over the complex network especially in
reconstructing high-frequency content.

From our study, it follows that DNNs, when applied to
inpainting audio gaps for medium durations, do not suffer
from the restrictions of previous methods. Additionally, even
for a simple DNN, the performance on complex signals is
already on par with the state of the art. It also follows
that by representing audio as TF coefficients, a generative
network developed for image inpainting can be adapted to
audio inpainting.

Generally, better results can be expected for increased depth
of the network and the available context. Experiments with our
method for longer medium-duration gaps and longer context
can be easily implemented just by adapting the parameters of
the network. Nevertheless, we expect technical limitations like
computational power to be an issue for long contexts. Instead,
a study of more efficient audio features will be required.
Our STFT features, meant in this study as a reasonable first
choice, provided a decent performance, however, in the future,
we expect hearing-related features to provide better recon-
structions. In particular, an investigation of Audlet frames,
i.e., invertible time-frequency systems adapted to perceptual
frequency scales, [68], as features for audio inpainting seem
to offer intriguing opportunities.

In the future, instead of training on a very general dataset,
improved performance can be obtained for more specialized
networks trained to specific genres or instrumentation. Further,
applied to a complex mixture and potentially preceded by a
source-separation algorithm, our proposed architecture could
be used jointly in a mixture-of-experts, [69], approach.
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