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ABSTRACT

Spherical data is found in many applications. By modeling the discretized sphere
as a graph, we can accommodate non-uniformly distributed, partial, and chang-
ing samplings. Moreover, graph convolutions are computationally more efficient
than spherical convolutions. As equivariance is desired to exploit rotational sym-
metries, we discuss how to approach rotation equivariance using the graph neural
network introduced in Defferrard et al. (2016). Experiments show good perfor-
mance on rotation-invariant learning problems. Code and examples are available
at https://github.com/SwissDataScienceCenter/DeepSphere.
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Figure 1: Examples of intrinsically spherical data: (left) the cosmic microwave background (CMB)
temperature from Planck Collaboration (2016), (middle) daily maximum temperature from the
Global Historical Climatology Network (GHCN),1(right) brain activity recorded through magne-
toencephalography (MEG).2For those examples, a rigid full-sphere pixelization is not ideal: the
Milky Way’s galactic plane masks observations, brain activity is measured on the scalp only, and the
position and density of weather stations is arbitrary and changes over time. Graphs can faithfully
and efficiently represent sampled spherical data by placing vertices where data has been measured.

1 INTRODUCTION

Graphs have long been used as models for discretized manifolds: for example to smooth meshes
(Taubin et al., 1996), reduce dimensionality (Belkin & Niyogi, 2003), and, more recently, to process
signals (Shuman et al., 2013). Along Euclidean spaces, the sphere is one of the most commonly
encountered manifold: it is notably used to represent omnidirectional images, global planetary data
(in meteorology, climatology, geology, geophysics, etc.), cosmological observations, and brain ac-
tivity measured on the scalp (see figure 1). Spherical convolutional neural networks (CNNs) have

1
https://www.ncdc.noaa.gov/ghcn-daily-description

2
https://martinos.org/mne/stable/auto_tutorials/plot_visualize_evoked.html
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Figure 2: Example architecture. Global tasks need a spatial summarization: the FCN variant is
rotation invariant (and accepts inputs of varying sizes), while the CNN variant is not. Dense tasks
(when the output lives on the sphere, like segmentation) are rotation equivariant.

been developed to work with some of these modalities (Cohen et al., 2018; Perraudin et al., 2018;
Frossard & Khasanova, 2017; Su & Grauman, 2017; Coors et al., 2018; Jiang et al., 2019).

Spherical data can be seen as a continuous function that is sampled at discrete locations. As it is
impossible to construct a regular discretization of the sphere, there is no perfect spherical sampling.
Schemes have been engineered for particular applications and come with trade-offs (Gorski et al.,
2005; Doroshkevich et al., 2005). However, while sampling locations can be precisely controlled
in some cases (like the CMOS sensors of an omni-directional camera), sensors might in general be
non-uniformly distributed, cover only part of the sphere, and move (see figure 1). Modeling the
sampled sphere as a discrete graph has the potential to faithfully and efficiently represent sampled
spherical data by placing vertices where data has been measured: no need to handle missing data
or to interpolate to some predefined sampling, and no waste of memory or precision due to over- or
under-sampling. Graph-based spherical CNNs have been proposed in Frossard & Khasanova (2017)
and Perraudin et al. (2018). Moreover, graph convolutions have a low computational complexity
of O(Npix), where Npix is the number of considered pixels. Methods based on proper spherical
convolutions, like Cohen et al. (2018) and Esteves et al. (2017), cost O(N2/3

pix ) operations.

Finally, like classical 2D CNNs are equivariant to translations, we want spherical CNNs to be equiv-
ariant to 3D rotations (Cohen & Welling, 2016; Kondor & Trivedi, 2018). A rotation-equivariant
CNN detects patterns regardless of how they are rotated on the sphere: it exploits the rotational sym-
metries of the data through weight sharing. Realizing that, spheres can be used to support data which
does not intrinsically live on a sphere but have rotational symmetries (Cohen et al., 2018; Esteves
et al., 2017, for 3D objects and molecules). In this contribution we present DeepSphere (Perraudin
et al., 2018), a spherical neural network leveraging graph convolution for its speed and flexibility.
Furthermore, we discuss the rotation equivariance of graph convolution on the sphere.

2 METHOD

Our method relies on the graph signal processing framework (Shuman et al., 2013), which highly
relies on the spectral properties of the graph Laplacian operator. In particular, the Fourier transform
is defined as the projection of the signal on the eigenvectors of the Laplacian, and the graph con-
volution as a multiplication in the Fourier domain. It turns out that the graph convolution can be
accelerated by being performed directly in the vertex domain (Hammond et al., 2011).

DeepSphere leverages graph convolutions to achieve the following properties: (i) computational
efficiency, (ii) adaptation to irregular sampling, and (iii) close to rotation equivariance. An example
architecture is shown in figure 2. The main idea is to model the discretised sphere as a graph of
connected pixels: the length of the shortest path between two pixels is an approximation of the
geodesic distance between them. We use the graph CNN formulation introduced in (Defferrard
et al., 2016), and a pooling strategy that exploits a hierarchical pixelisation of the sphere to analyse
the data at multiple scales. The current implementation of DeepSphere relies on the Hierarchical
Equal Area isoLatitude Pixelisation (HEALPix) (Gorski et al., 2005), a popular sampling used in

2



Published at the ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds

θ

Figure 3: circle
C1 (green), regular
samples and graph
vertices (red), graph
edges (blue).

1 4 9 16 25 36 49
Eigenvalue 

0.00

0.02

0.04

0.06

Va
lu

e

 = 1  = 2
 = 3

 = 4
 = 5

 = 6

Figure 4: The eigenvalues Λ of the graph Laplacian L = UΛUᵀ are
clearly organized in groups. Each group corresponds to a degree ` of
the spherical harmonics. Each degree has 2`+ 1 orders.
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Figure 5: Correspondence between the subspaces spanned by the graph Fourier basis and the spher-
ical harmonics. The eigenvectors U = [u1, . . . ,uNpix

] of the graph Laplacian L = UΛUᵀ, which
form the Fourier basis, clearly resemble the spherical harmonics. The first 8 are shown on the left.
To quantify the correspondence, we compute the power spectral density (PSD) of each eigenvec-
tor with the SHT. Second, as there is 2` + 1 spherical harmonics for each degree `, we sum the
contributions of the corresponding 2` + 1 eigenvectors. The matrices on the right show how the
subspaces align: the Fourier basis spans the same subspaces as the spherical harmonics in the low
frequencies, and the eigenvectors leak towards adjacent frequency bands at higher frequencies. The
graph Fourier basis aligns at higher frequencies as the resolution (Npix = 12N2

side) increases.

cosmology and astrophysics. See Perraudin et al. (2018) for details. DeepSphere is, however, easily
used with other samplings as only two elements depend on it: (i) the choice of neighboring pixels
when building the graph, and (ii) the choice of parent pixels when building the hierarchy.

The flexibility of modeling the data domain with a graph allows one to easily model data that spans
only a part of the sphere, or data that is not uniformly sampled. Furthermore, using a k-nearest
neighbors graph, the convolution operation costs O(Npix) operations. This is the lowest possible
complexity for a convolution without approximations. Nevertheless, while the graph framework
offers great flexibility, its ability to faithfully represent the underlying sphere highly depends on the
sampling locations and the graph construction. This should not be neglected since the better the
graph represents the sphere, the closer to rotation equivariant the graph convolution will be.

3 HARMONICS AND EQUIVARIANCE

Both the graph and the spherical convolutions can be expressed as multiplications in a Fourier do-
main. As the spectral bases align, the two operations become similar. Hence, the equivariance
property of the spherical convolution carries out to the graph convolution.

Known case: the circle C1. Let θ ∈ [0, 2π[ be a parametrization of each point (cos θ, sin θ) of
C1. The eigenfunctions of the Laplace-Beltrami operator of C1 are u`(θ) = eiθm`, for ` ∈ N
and m ∈ {−1, 1}. Interestingly, for a regular sampling of C1 (shown in figure 3), the sampled
eigenfunctions turn out to be the discrete Fourier basis. That is, the harmonic decomposition of
a discretized function on the circle can be done using the well-known discrete Fourier transform
(DFT). Moreover, the graph Laplacian of the sampled circle is diagonalized by the DFT basis, as all
circulant matrices have complex exponentials as eigenbases Strang (1999). Hence, for C1, it can be
verified, under mild assumptions, that the graph convolution is equivariant to translation (Perraudin
& Vandergheynst, 2017, section 2.2 and equation 3). More generally, higher dimensional circles
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Figure 6: Classification accuracies. The difficulty of the task depends on the level of noise and the
size of a sample (that is, the number of pixels that constitute the sample to classify). Order o = 1
corresponds to samples which area is 1

12 = 8.1% of the sphere (≈ 1 × 106 pixels), order o = 2

to 1
12×22 = 2.1% (≈ 260 × 103 pixels), and order o = 4 to 1

12×42 = 0.5% (≈ 65 × 103 pixels).
The FCN variant of DeepSphere beats the CNN variant by being invariant to rotation. Both variants
largely beat the 2D ConvNet and the two SVM baselines.

such as the torus C2 also have a circulant Laplacian and an equivariant convolution. The above
does however not hold for irregular samplings: the more irregular the sampling, the further apart the
graph Fourier basis will be to the sampled eigenfunctions.

Analysis of the graph Laplacian used in DeepSphere. As there is no regular sampling of the
sphere, we cannot have a similar reasoning as we had for the circle. We can however perform a
harmonic analysis to empirically assess how similar the graph and the spherical convolutions are.
The graph Laplacian eigenvalues, shown in figure 4, are clearly organized in frequency groups of
2`+1 orders for each degree `. These blocks correspond to the different eigenspaces of the spherical
harmonics. We also show the correspondence between the subspaces spanned by the graph Fourier
basis and the spherical harmonics in figure 5. For example withNside = 4, we observe a good align-
ment for ` ≤ 8: the graph convolution will be equivariant to rotations for low frequency filters. The
imperfections are likely due to the small irregularities of the HEALPix sampling (varying number
of neighbors and varying distances between vertices). Furthermore, a follow-up study is underway
to optimally construct the graph. We also hope to get a proof of equivalence or convergence.

4 EXPERIMENTS

Setup. The performance of DeepSphere is demonstrated on a discrimination problem: the classi-
fication of cosmological convergence maps3 into two model classes. Details about the experimental
setup can be found in Perraudin et al. (2018). Code to reproduce the results is in the git repository.

We propose two architectures: the “CNN variant”, where convolutional layers are followed by dense
layers, and the “FCN variant”, where convolutional layers are followed by global average pooling.
The FCN variant is rotation invariant to the extent that the convolution is rotation equivariant.

Baselines. DeepSphere is first compared against two simple yet powerful cosmological baselines,
based on features that are (i) the power spectral densities (PSD) of maps, and (ii) the histogram of
pixels in the maps (Patton et al., 2017). DeepSphere is further compared to a classical CNN for 2D
Euclidean grids, as in (Krachmalnicoff & Tomasi, 2019). To be fed into the 2D ConvNet, partial
spherical signals are transformed into flat images. DeepSphere and the 2D ConvNet have the same
number of trainable parameters.

Results. Figure 6 summaries the results. Overall, DeepSphere performs best with a gap that
widens as the problem gets more difficult. The FCN variant outperforms the CNN variant as it
exploits the rotational symmetry of the task (explained by the cosmological principle of homogene-
ity and isotropy). The 2D ConvNet fairs in-between the SVMs and DeepSphere. Lower performance
is thought to be due to a lack of rotation equivariance, and to the geometric distortion introduced by
the projection, which the NN has to learn to compensate for.

3Convergence maps represent the distribution of over- and under-densities of mass in the universe. They
were created using the fast lightcone method UFalcon described in (Sgier et al., 2018).
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