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Abstract
Randomized algorithms reduce the complexity
of low-rank recovery methods only w.r.t dimen-
sion p of a big dataset Y ∈ <p×n. However, the
case of large n is cumbersome to tackle without
sacrificing the recovery. The recently introduced
Fast Robust PCA on Graphs (FRPCAG) approx-
imates a recovery method for matrices which are
low-rank on graphs constructed between their
rows and columns. In this paper we provide a
novel framework, Compressive PCA on Graphs
(CPCA) for an approximate recovery of such
data matrices from sampled measurements. We
introduce a RIP condition for low-rank matrices
on graphs which enables efficient sampling of
the rows and columns to perform FRPCAG on
the sampled matrix. Several efficient, parallel
and parameter-free decoders are presented along
with their theoretical analysis for the low-rank re-
covery and clustering applications of PCA. On
a single core machine, CPCA gains a speed up
of p/k over FRPCAG, where k � p is the sub-
space dimension. Numerically, CPCA can effi-
ciently cluster 70,000 MNIST digits in less than
a minute and recover a low-rank matrix of size
10304×1000 in 15 secs, which is 6 and 100 times
faster than FRPCAG and exact recovery.

1. Introduction
Exact low-rank recovery methods like Robust PCA
(Candès et al., 2011) do not scale for big datasets Y ∈
<p×n (large p and large n). Randomized techniques are
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used to effectively deal with this problem associated with
high dimensional data (the case of large p) (Tropp, 2008;
Boutsidis et al., 2009; Witten & Candes, 2013; Li & Haupt,
2015; Halko et al., 2011; Oh et al., 2015; Rahmani & Atia,
2015a;b; Ha & Barber, 2015) using the tools of compres-
sion (Davenport et al., 2010). These works improve upon
the computational complexity by reducing only the data di-
mension p but still scale in the same manner w.r.t n. Factor-
ized methods (Jiang et al., 2013; Zhang & Zhao, 2013) are
faster and scale well but this comes at the price of the loss
of convexity. Thus, the case of large n remains unresolved.

For many machine learning applications involving big data,
such as clustering, an approximate low-rank representa-
tion might suffice. The recently introduced Fast Robust
PCA on Graphs (FRPCAG) (Shahid et al., 2015b) approx-
imates a recovery method for clusterable matrices which
are low-rank on graphs constructed between their rows and
columns. As shown in (Shahid et al., 2015b), many real
world data matrices can be considered to be low-rank on
graphs due to an underlying stationarity assumption (Per-
raudin & Vandergheynst, 2016).

FRPCAG does not require an SVD and scales linearly with
n. However, it still suffers from 1) memory requirements
2) non-parallel implementation 3) cost of k-means for clus-
tering and 4) the cost of parameter tuning for large p and
large n. To solve the above mentioned problems with FR-
PCAG we propose to perform a sampling of the data matri-
ces along rows and columns inspired by the recent work of
(Puy et al., 2015) and work with the sampled data.

In this work we present a restricted isometry property
(RIP) for low-rank matrices on graphs and relate it to the
cumulative coherence of the graph eigenvectors. The pro-
posed row and column sampling strategy is used to solve
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the low-rank recovery task on the sampled data by using
FRPCAG. Finally, we present 3 convex, efficient, paral-
lel, low-cost and parameter-free decoders with theoreti-
cal guarantees for two potential applications of PCA: low-
rank recovery and clustering. We call our proposed frame-
work “Compressive PCA on graphs” (CPCA). The com-
putational complexity of CPCA is only dominated by the
graph construction (O(np log(n))) using FLANN (Muja &
Lowe, 2014) which supports a high degree of parallelism.
A speed-up of p/k (where k � p is the rank of the sub-
space or number of clusters in Y ) is obtained over FR-
PCAG solely for low-rank recovery and clustering tasks.

2. Compressive PCA
2.1. Graph Nomenclature
For a matrix Y ∈ <p×n, a K-nearest neighbor undirected
graph between the rows or columns of Y is denoted as
G = (V, E), where E is the set of edges and V is the set
of vertices. The first step in the construction of G consists
of connecting each yi to its K nearest neighbors yj (us-
ing Euclidean distance), resulting in |E| connections. The
K-nearest neighbors are non-symmetric but a symmetric
weighted adjacency matrix W is computed via a Gaus-
sian kernel as Wij = exp(−‖(yi − yj)‖22/σ2) if yj is
connected to yi and 0 otherwise. Let D be the diagonal
degree matrix of G which is given as: Dii =

∑
jWij .

Then, the combinatorial Laplacian that characterizes the
graph G is defined as L = D − W and its normalized
form as Ln = D−1/2(D − W )D−1/2. Throughout this
work we use the approximate nearest neighbor algorithm
(FLANN (Muja & Lowe, 2014)) for graph construction
whose complexity is O(np log(n)) for p � n (Sankara-
narayanan et al., 2007) (and it can be performed in paral-
lel).

2.2. Low-rank matrices on graphs
Let Lc ∈ Rn×n be the Laplacian of the graph Gc connect-
ing the different columns of Y and Lr ∈ Rp×p the Lapla-
cian of the graph Gr that connects the rows of Y . Further-
more, let Lc = QΛcQ

> = QkcΛckcQ
>
kc

+ Q̄kcΛ̄ckcQ̄
>
kc

,
where Λkc ∈ <kc×kc is a diagonal matrix of lower eigen-
values and Λ̄kc ∈ <(n−kc)×(n−kc) is a diagonal matrix of
higher graph eigenvalues. Similarly, let Lr = PΛrP

> =
PkrΛrkrP

>
kr

+P̄kr Λ̄rkr P̄
>
kr

. All the values in Λr and Λc are
sorted in increasing order. For aK-nearest neighbors graph
constructed from kc-clusterable data (along columns) one
can expect λkc/λkc+1 ≈ 0 as λkc ≈ 0 and λkc � λkc+1.
We refer to the ratio λkc/λkc+1 as the spectral gap of Lc.
The same holds for the Laplacian Lr. Then, low-rank ma-
trices on graphs can be defined as following and recovered
by solving FRPCAG (Shahid et al., 2015b).

Definition 1. A matrix Y ∗ is (kr, kc)-low-rank on the
graphs Lr and Lc if (Y ∗)j ∈ span(Pkr ) for all j =
1, . . . , n and (Y ∗)>i ∈ span(Qkc) for all i = 1, . . . , p.

The set of (kr, kc)-low-rank matrices on the graphs Lr and
Lc is denoted by LR(Pkr , Qkc).

2.3. Proposed scheme & organization of the paper
Given a data matrix Y ∈ <p×n = X̄ + E, where X̄ ∈
LR(Pkr , Qkc), the goal is to develop a method to effi-
ciently recover X̄ . We propose to: 1) Construct Lapla-
cians Lr and Lc between the rows and columns of Y us-
ing the scheme of Section 2.1. 2) Sample the rows and
columns of Y to get a subsampled matrix Ỹ using the sam-
pling scheme of Section 3. 3) Construct the compressed
Laplacians L̃r, L̃c from Lr,Lc (Section 4). 4) Determine a
low-rank X̃ for Ỹ with L̃r, L̃c in algorithm 1 of FRPCAG:

min
X̃
‖Ỹ − X̃‖1 + γc tr(X̃L̃cX̃>) + γr tr(X̃>L̃rX̃),

(1)

where X̃ = MrX̄Mc + Ẽ and Ẽ models the errors in the
recovery of the subsampled matrix X̃ . 5) Use the decoders
presented in Section 5 to decode the low-rank X (for the
unsampled Y ) on graphs Lr,Lc if the task is low-rank re-
covery, or 6) perform k-means on X̃ to get cluster labels C̃
and use the semi-supervised label propagation (presented
in Section 6) to get the cluster labels C for the full X .

We directly state the computational complexities of several
problems due to the space constraints. The details of cal-
culations are presented in Appendix A.8.

3. How to sample? RIP for low-rank
matrices on graphs

Let Mr ∈ <ρr×p be the subsampling matrix for sampling
the rows and Mc ∈ <n×ρc for sampling the columns of
Y . Mc and Mr are constructed by drawing ρc and ρr
indices Ωc = {ω1 · · ·ωρc} and Ωr = {ω1 · · ·ωρr} uni-
formly without replacement from the sets {1, 2, · · · , n}
and {1, 2, · · · , p} and satisfy:

M ij
c =

{
1 if i = ωj
0 otherwise M ij

r =

{
1 if j = ωi
0 otherwise. (2)

Now, the subsampled data matrix Ỹ ∈ <ρc×ρr can be writ-
ten as Ỹ = MrYMc. CPCA requires Mr and Mc to be
constructed such that the “low-rankness” property of the
data Y is preserved under sampling. Before discussing this,
we introduce a few basic definitions in the context of graphs
Gc and Gr.

Definition 2. (Graph cumulative coherence). The cumu-
lative coherence of order kc, kr of Gc and Gr is:

νkc = max
1≤i≤n

√
n‖Q>kc∆i‖2 & νkr = max

1≤j≤p

√
p‖P>kr∆j‖2,

where ∆i is 1 for a node i and 0 otherwise, i.e, ∆i is the
localized node of the graph. In the above equations Q>kc∆i

and P>kr∆j characterize the first kc and kr fourier modes
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(Shuman et al., 2013) of ∆i,∆j on the graphs Gc and Gr
respectively. Thus, the cumulative coherence is a measure
of how well the energy of the (kr, kc) low-rank matrices
spreads over the nodes of the graphs. These quantities ex-
actly control the number of vertices ρc and ρr that need to
be sampled from the graphs Gr and Gc such that the prop-
erties of the graphs are preserved (Puy et al., 2015). As
we are concerned about data matrices Y ∈ LR(Pkr , Qkc),
the coherence for the graphs directly imply the coherence
conditions on Y .

Theorem 1. (Restricted-isometry property (RIP) for low-
rank matrices on graphs) Let Mc and Mr be two random
subsampling matrices as constructed in (2). For any δ, ε ∈
(0, 1), with probability at least 1− ε,

(1− δ)‖Y ‖2F ≤
np

ρrρc
‖MrYMc‖2F ≤ (1 + δ)‖Y ‖2F (3)

for all Y ∈ LR(Pkr , Qkc) provided that

ρc ≥
27

δ2
ν2kc log

(
4kc
ε

)
& ρr ≥

27

δ2
ν2kr log

(
4kr
ε

)
, (4)

where νkc , νkr characterize the graph cumulative coher-
ence as in Definition 2 and np

ρcρr
is just a normalization

constant which quantifies the norm conservation in (3).

Proof. Please refer to Appendix A.1.
Theorem 1 is a direct extension of the RIP for k-
bandlimited signals on one graph (Puy et al., 2015). It
states that the information in Y ∈ LR(Pkr , Qkc) is pre-
served with overwhelming probability if the sampling ma-
trices (2) are constructed with a uniform sampling strategy
satisfying (4). Note that ρr and ρc depend on the cumula-
tive coherence of the graph eigenvectors. The better spread
the eigenvectors are, the smaller is the number of vertices
that need to be sampled. As proved in (Puy et al., 2015),
we have v2kr ≥ kr and v2kc ≥ kc. Therefore, kc and kr is
the minimum number of columns and rows that we need to
sample. Our proposed framework in this paper builds on
the case of uniform sampling but it can be easily extended
for other sampling schemes (Puy et al., 2015).

4. Graphs for Compressed data
To ensure the preservation of algebraic and spectral prop-
erties one can construct the compressed Laplacians L̃r ∈
<ρr×ρr and L̃c ∈ <ρc×ρc from the kron reduction of Lr
and Lc (Dorfler & Bullo, 2013). Let Ω be the set of sam-
pled nodes and Ω̄ the complement set and let L(Ar, Ac)
denote the (row, column) sampling of L w.r.t sets Ar, Ac
then the Laplacian L̃c for the columns of compressed ma-
trix Ỹ is:

L̃c = Lc(Ω,Ω)− Lc(Ω, Ω̄)L−1c (Ω̄, Ω̄)Lc(Ω̄,Ω).

Let Lc has kc connected components or λkc/λkc+1 ≈ 0.
Then, as argued in theorem III.4 of (Dorfler & Bullo,

2013) two nodes α, β are not connected in L̃c if there is
no path between them in Lc via Ω̄. Thus, if the sampling
is done uniformly then one can expect L̃c to have kc con-
nected components as well. The same holds for L̃r as well.
This method involves the multiplication of 3 sparse matri-
ces. The only expensive operation above is the inverse of
L(Ω̄, Ω̄) which can be performed with O(OlKn) cost us-
ing the Lancoz method (Susnjara et al., 2015), where Ol is
the number of iterations for Lancoz approximation.

5. Decoders for low-rank recovery
Let X̃ ∈ <ρr×ρc be the low-rank solution of (1) with the
compressed graph Laplacians L̃r, L̃c and sampled data Ỹ .
The goal is to decode the low-rank X ∈ <p×n for the full
Y . We assume that X̃ = MrX̄Mc+Ẽ, where Ẽ ∈ <ρr×ρc
models the noise incurred by (1).

5.1. Ideal Decoder
A straight-forward way to decode X on the original graphs
Lr and Lc, when one knows the basis Pkr , Qkc involves
solving the following optimization problem:

min
X
‖MrXMc − X̃‖2F

s.t: (X)i ∈ span(Pkr ), (X>)j ∈ span(Qkc). (5)

Theorem 2. Let Mr and Mc be such that (3) holds and
X∗ be the solution of (5) with X̃ = MrX̄Mc + Ẽ, where
X̄ ∈ LR(Pkr , Qkc) and Ẽ ∈ <ρr×ρc . We have:

‖X∗ − X̄‖F ≤ 2

√
np

ρcρr(1− δ)
‖Ẽ‖F , (6)

where
√
np/ρcρr(1− δ) is a constant resulting from the

norm preservation in (3).
Proof. Please refer to Appendix A.2.
Thus, the error of the ideal decoder is only bounded by
the error Ẽ in the low-rank X̃ obtained by solving (1). In
fact Ẽ depends on the spectral gaps of L̃c, L̃r, as explained
in Theorem 2 of (Shahid et al., 2015b). Hence, the ideal
decoder itself does not introduce any error in the decode
stage. The solution for this decoder requires projecting
over the eigenvectors P and Q of Lr and Lc. This is com-
putationally expensive because diagonalization of Lr and
Lc cost O(p3) and O(n3) respectively. Moreover, the con-
stants kr, kc are not known beforehand and require tuning.

5.2. Alternate Decoder
As the ideal decoder is computationally costly, we propose
to decode X from X̃ by using a convex and computation-
ally tractable problem which involves the minimization of
graph dirichlet energies.
min
X
‖MrXMc−X̃‖2F+γ̄c tr(XLcX>)+γ̄r tr(X>LrX).

(7)

Theorem 3. Let Mr and Mc be such that (3) holds and
γ > 0. Let also X∗ be the solution of (7) with γ̄c =
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γ/λkc+1, γ̄r = γ/λkr+1, and X̃ = MrX̄Mc + Ẽ, where
X̄ ∈ LR(Pkr , Qkc) and Ẽ ∈ <ρr×ρc . We have:

‖X̄∗ − X̄‖F ≤
√

np

ρcρr(1− δ)

[(
2 +

1√
2γ

)
‖Ẽ‖F+

(
1√
2

+
√
γ)

√( λkc
λkc+1

+
λkr
λkr+1

)
‖X̄‖F

]
, and

‖E∗‖F ≤
‖Ẽ‖F√

2γ
+

1√
2

√( λkc
λkc+1

+
λkr
λkr+1

)
‖X̄‖F ,

(8)

where X̄∗ = ProjLR(Pkr ,Qkc )
(X) and E∗ = X∗ − X̄∗.

ProjLR(Pkr ,Qkc )
(.) denotes the orthogonal projection onto

LR(Pkr , Qkc) and γ depends on the signal to noise ratio.
Proof. Please refer to Appendix A.3
Theorem 3 states that in addition to the error Ẽ in X̃ in-
curred by (1), the error of the alternate decoder (7) also
depends on the spectral gaps of the Laplacians Lr and Lc
respectively. This is the price that one has to pay in order
to avoid the expensive ideal decoder. For a kr, kc cluster-
able data Y across the rows and columns, one can expect
λkr/λkr+1 ≈ 0 and λkc/λkc+1 ≈ 0 and the solution is as
good as the ideal decoder. Nevertheless, it is possible to
reduce this error by using graph filters g such that the ra-
tios g(λkc)/g(λkc+1) and g(λkr )/g(λkr+1) approach zero.
However, we do not discuss this approach in our work. It is
trivial to solve (7) using a conjugate gradient scheme that
costsO(InpK), where I is the number of iterations for the
algorithm to converge.

5.3. Approximate Decoder 1: The subspace
upsampling scheme

The alternate decoder proposed above is 1) almost as com-
putationally expensive as FRPCAG and 2) requires tuning
two model parameters. In this section we propose an ap-
proximate decoder which overcomes these limitations.

5.3.1. STEP 1: SPLITTING THE ALTERNATE DECODER

Using X = UΣV > and X̃ = Ũ Σ̃Ṽ > and the invariance
property of the trace under cyclic permutations, we can re-
place (7) by:

min
U,V
‖MrUΣV >Mc − Ũ Σ̃Ṽ >‖2F + γ̄c tr(Σ2V >LcV )+

γ̄r tr(U>LrUΣ2) s.t: U>U = Ik, V
>V = Ik.

Σ̃ can be determined by one inexpensive SVD (O(ρ2rρc)

for ρr < ρc) of X̃ and k can be set equal to the number of
entries in Σ̃ which are above a threshold. If (8) holds for
the alternate decoder then ‖Σ̄∗− Σ̄‖F (where Σ̄∗, Σ̄ are the
singular values of X̄∗, X̄) is also bounded as argued in the
discussion of Appendix A.3. Thus, the singular values Σ
and Σ̃ of X and X̃ differ approximately by the normaliza-
tion constant of theorem 1 .

Assuming Ũ = MrŪ + Ẽu and Ṽ = V̄ Mc + Ẽv , where
(Ū)i ∈ span(Pkr ), i = 1, · · · , p, (V̄ >)j ∈ span(Qkc),
j = 1, · · · , n and Ẽu ∈ <ρr×ρr , Ẽv ∈ <ρc×ρc and X̄ =
Ū Σ̄V̄ >, where X̄ ∈ LR(Pkr , Qkc), we can propose an
approximate decoder which separately solves the subspace
(U and V ) learning problems.

min
U
‖MrU − Ũ‖2F + γ

′

r tr(U>LrU) s.t: U>U = Ik,

min
V
‖V >Mc − Ṽ ‖2F + γ

′

c tr(V >LcV ) s.t: V >V = Ik.

(9)

Now using X = U Σ̃V >
√
np/ρrρc(1− δ) gives a good

approximate solution. Solving (9) is as expensive as (7)
due to the orthonormality constraints (as explained in ap-
pendix A.4). Therefore, we drop the constraints and get

min
U
‖MrU − Ũ‖2F + γ

′

r tr(U>LrU), (10)

min
V
‖V >Mc − Ṽ ‖2F + γ

′

c tr(V >LcV ). (11)

The solution to (10) & (11) is not orthonormal anymore.
The deviation from the orthonormality depends on the con-
stants γ

′

r and γ
′

c, butX = U Σ̃V >
√
np/ρrρc(1− δ) is still

low-rank. The above two problems can be solved using tra-
ditional iterative methods for linear systems. In fact, the
closed form solutions can be written as:

U = (M>r Mr + γ
′

rLr)−1M>r Ũ , (12)

V = (McM
>
c + γ

′

cLc)−1McṼ . (13)

Thus, problems (10) & (11) decode the subspaces U and V
such that they are smooth on their respective graphs Lr and
Lc. This can also be referred to as a simultaneous decoding
and subspace denoising stage. The columns of U and V are
not normalized with the above solution, therefore, a unit
norm normalization step is needed at the end.
Theorem 4. Let Mr and Mc be such that (3) holds and
γ′r, γ

′
c > 0. Let also U∗ and V ∗ be respectively the

solutions of (10) and (11) with Ũ = MrŪ + Ẽu and
Ṽ = V̄ Mc + Ẽv , where (Ū)i ∈ span(Pkr ), i = 1, · · · , p,
(V̄ >)j ∈ span(Qkc), j = 1, · · · , n, Ẽu ∈ <ρr×ρr ,
Ẽv ∈ <ρc×ρc . We have:

‖Ū∗ − Ū‖F ≤

√
2p

ρr(1− δ)

[(
2 +

1√
γ′rλkr+1

)
‖Ẽu‖F

+

(√
λkr
λkr+1

+
√
γ′rλkr

)
‖Ū‖F

]
, and

‖E∗‖F ≤

√
2

γ′rλkr+1
‖Ẽu‖F +

√
2
λkr
λkr+1

‖Ū‖F .

where Ū∗ = PkrP
>
kr
X and E∗ = U∗ − Ū∗. The same in-

equalities with slight modification also hold for V ∗, which
we omit because of space constraints.
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Table 1. Summary of CPCA and its computational complexity for a dataset Y ∈ <p×n. Throughout we assume thatK, k, ρr, ρc, p� n.

Steps Procedure Complexity
1 Construct graph Laplacians between the rows Lr and columns Lc of Y using Section 2.1. O(np log(n))
2 Construct row and column sampling matrices Mr ∈ <ρr×p and Mc ∈ <n×ρc satisfying (2) and theorem 1 –
3 Sample the data matrix Y as Ỹ = MrYMc –
4 Construct the new graph Laplacians between the rows L̃r and columns L̃c of Ỹ using Section 4. O(OlKn)

5 Solve FRPCAG (1) using algorithm 1 in (Shahid et al., 2015b) to get the low-rank X̃ O(IρrρcK)

6 For clustering: Run k-means on X̃ to get the cluster labels C̃ O(Iρrρck)
Decode the cluster labels C for X on graphs Lr,Lc using the semi-supervised label propagation (Section 6) O(Olnk)

7 For low-rank recovery: Decode X from X̃ using the approximate decoder (eq. (16) of Section 5.3) O(OlnkK)

Proof. Please refer to Appendix A.5.
As X̄ = Ū Σ̄V̄ >, we can say that the error with this approx-
imate decoder is upper bounded by the product of the errors
of the individual subspace decoders. Also note that the er-
ror again depends on the spectral gaps defined by the ratios
λkc/λkc+1 and λkr/λkr+1. This decoder is less expensive
as compared to the alternate decoder and costs O(IKkn).
Furthermore, each of the vectors of the subspaces U and V
can be determined in parallel.

5.3.2. STEP 2: SUBSPACE UPSAMPLING

To avoid tuning two parameters γ
′

r and γ
′

c we propose to
re-formulate the approximate decoder as follows:

min
U

tr(U>LrU) and min
V

tr(V >LcV )

s.t: MrU = Ũ , s.t: M>c V = Ṽ . (14)

The solution to the above problems is simply a graph up-
sampling operation as explained in Lemma 1. Since our
subspaces Ũ and Ṽ are determined by the SVD of X̃ which
is noise and outlier free, we can directly upsample them
without needing a margin for the noise. Note that now we
have a parameter-free decode stage.
Lemma 1. Let S ∈ <c×r and R ∈ <d×r be the two
matrices such that d < r and d < c. Furthermore, let
M ∈ <d×c be a sampling matrix as constructed in (2)
and L ∈ <c×c be a symmetric positive semi-definite ma-
trix. We can write S = [S>a |S>b ]>, where Sb ∈ <d×r and
Sa ∈ <(c−d)×r are the known and unknown submatrices
of S. Then the exact and unique solution to the following
problem:

min
Sa

tr(S>LS), s.t: MS = R (15)

is given by Sa = −L−1aaLabR.

Proof. Please refer to Appendix A.6.

Using Lemma 1 and the notation of Section 4 we can write:

U =

[
−L−1r (Ω̄r, Ω̄r)Lr(Ω̄r,Ωr)Ũ

Ũ

]
V =

[
−L−1c (Ω̄c, Ω̄c)Lc(Ω̄c,Ωc)Ṽ

Ṽ

]
. (16)

Eqs. (16) involve solving a large sparse linear system. If
each connected component of the graph has at least one la-
beled element,Lr(Ω̄r, Ω̄r) is full rank and invertible. How-
ever, for stability reasons, we prefer a pseudo inversion.
Since Lr(Ω̄r, Ω̄r) is symmetric, we can use a Lancoz based
approximation (Susnjara et al., 2015). The idea is based on
the fact that

L†aR = g(La)R, where g(x) =

{
1
x x > 10−8

0 otherwise.

Note that the eqs. (16) can be implemented in parallel for
every column of U and V . This gives a significant ad-
vantage over the alternate decoder in terms of computa-
tion time. The cost of this decoder is O(OlKkn) where
Ol is the number of iterations for the Lancoz approxima-
tion method. Two other schemes for approximate decoders
are presented in Appendix A.7.

6. Decoder for clustering: Semi-supervised
Label Propagation

For the clustering application we do not need the full low-
rank matrix X . Thus, we propose to do k-means on the
low-rank representation of the sampled data X̃ obtained us-
ing (1), extract the cluster labels C̃ and then decode the
cluster labels C for X on the graphs Lr and Lc. This
scheme is similar to the standard semi-supervised label
propagation.

Let C̃ ∈ {0, 1}ρc×k be the cluster labels of X̃ (for k clus-
ters) which are obtained by performing k-means. Then
C̃ij = 1 if x̃i ∈ jth cluster and 0 otherwise. We use
the same strategy as for the approximate low-rank decoder
and propose to solve the following problem:

min
C

tr(C>LcC) s.t: M>c C = C̃. (17)

According to Lemma 1, the solution is given by:

C =

[
−L−1c (Ω̄c, Ω̄c)Lc(Ω̄c,Ωc)C̃

Ṽ

]
. (18)

The solution C obtained by solving the above problem is
not binary and some maximum pooling thresholding needs
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to be done to get the cluster labels, i.e,

Cij ←
{

1 if Cij = max{Cij ∀ j = 1 · · · k}
0 otherwise.

7. Computational Complexity
A summary of all the decoders and their computational
complexities is presented in Table 6 of Appendix A.8. The
complete CPCA algorithm and the computational com-
plexities of different steps are presented in Table 1. For
K, k, ρr, ρc, p� n CPCA scales asO(np log(n)) which is
in fact the complexity of graph construction using FLANN
(Muja & Lowe, 2014). Note that as compared to FR-
PCAG (O(InpK)), the complexity of CPCA for low-rank
recovery (excluding the construction of graphs Gr, Gc) is
O(OlnkK). Thus a speed-up of p/k is obtained as com-
pared to FRPCAG. A detailed explanation regarding the
calculation of complexities of CPCA and other models is
presented in Table 7 and Appendix A.8.

8. Experimental Results
We perform two types of experiments corresponding to two
applications of PCA 1) Data clustering and 2) Low-rank re-
covery using two open-source toolboxes: the UNLocBoX
(Perraudin et al., 2014a) and the GSPBox (Perraudin et al.,
2014b). Due to space constraints some of the results are
presented in Appendix A.8.

8.1. Clustering
Datasets: We perform our clustering experiments on 5
benchmark databases (as in (Shahid et al., 2015a;b)): CMU
PIE, ORL, YALE, MNIST and USPS. For the USPS and
ORL dataset, we further run two types of experiments 1)
on subset of datasets and 2) on full datasets. The experi-
ments on the subsets of the datasets take less time so they
are used to show the efficiency of our model for a wide
variety of noise types. The details of all datasets used are
provided in Table 8 of Appendix A.8.

Noise & Errors: To evaluate the robustness of CPCA to
corruptions we add 3 different types of noise in all the
samples of datasets in different experiments: 1) Gaussian
noise and 2) Laplacian noise with standard deviation rang-
ing from 5% to 20% of the original data 3) Sparse noise
(randomly corrupted pixels) occupying 5% to 20% of each
data sample.

Comparison with other methods: We compare the clus-
tering performance of CPCA with 11 other models in-
cluding: 1) k-means on original data 2) Laplacian Eigen-
maps (LE) (Belkin & Niyogi, 2003) 3) Locally Linear Em-
bedding (LLE) (Roweis & Saul, 2000) 4) Standard PCA
5) Graph Laplacian PCA (GLPCA) (Jiang et al., 2013)
6) Manifold Regularized Matrix Factorization (MMF)
(Zhang & Zhao, 2013) 7) Non-negative Matrix Factoriza-
tion (NMF) (Lee & Seung, 1999) 8) Graph Regularized

Non-negative Matrix Factorization (GNMF) (Cai et al.,
2011) 9) Robust PCA (RPCA) (Candès et al., 2011) 10)
Robust PCA on Graphs (RPCAG) (Shahid et al., 2015a)
and 11) Fast Robust PCA on Graphs (FRPCAG) (Shahid
et al., 2015b). RPCA and RPCAG are not used for the eval-
uation of MNIST, USPS large and ORL large datasets due
to computational complexity of these models.

Pre-processing: All datasets are transformed to zero-mean
and unit standard deviation along the features / rows. For
MMF the samples are additionally normalized to unit-
norm. For NMF and GNMF only the unit-norm normal-
ization is applied to all the samples of the dataset as NMF
based models can only work with non-negative data.

Evaluation Metric: We use clustering error as a metric
to compare the clustering performance of various models.
The clustering error for LE, PCA, GLPCA, MMF, NMF
and GNMF is evaluated by performing k-means on the
principal components V (note that these models explicitly
learn V , where X = UΣV >). The clustering error for
RPCA, RPCAG and FRPCAG is determined by perform-
ing k-means directly on the low-rank X . For our CPCA
method, k-means is performed on the small low-rank X̃
and then the labels for full X are decoded using the strat-
egy of Section 6.

Parameter Selection: To perform a fair validation for each
of the models we use a range of values for the model param-
eters as presented in Table 9 of Appendix A.8. For a given
dataset, each of the models is run for each of the parame-
ter tuples in this table and the parameters corresponding to
minimum clustering error are selected for testing purpose.
Furthermore, PCA, GLPCA, MMF, NMF and GNMF are
non-convex models so they are run 10 times for each of
the parameter tuple. RPCA, RPCAG, FRPCAG and CPCA
based models are convex so they are run only once. For our
proposed CPCA, we use a convention CPCA(a, b), where
a and b denote the downsampling factors on the columns
and rows respectively. A uniform sampling strategy is al-
ways used for CPCA.

The graphs Gr, Gc are constructed using FLANN (Muja &
Lowe, 2009) as discussed in Section 2.1. The small graphs
G̃r, G̃c can also be constructed using FLANN or the strat-
egy of Section 4. For all the experiments reported in this
paper we use K-nearest neighbors = 10 and Gaussian ker-
nel for the adjacency matrices W . The smoothing parame-
ters σ2 for the Gaussian kernels are automatically set to the
average distance of the K-nearest neighbors.

Discussion: Tables 2 & 3 (and 10 & 11 in Appendix A.8)
present the clustering results for USPS small, USPS large,
MNIST, ORL small, ORL large, CMU PIE and YALE
datasets. Note that not all the models are run for all the
datasets due to computational constraints. The best results
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Table 2. Clustering error of USPS datasets for different PCA based models. The best results per column are highlighted in bold and the
2nd best in blue. NMF and GNMF require non-negative data so they are not evaluated for USPS because USPS is also negative.

Dataset Model no noise Gaussian noise Laplacian noise Sparse noise
5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

k-means 0.31 0.31 0.31 0.33 0.32 0.32 0.30 0.36 0.37 0.40 0.45 0.53 0.73
LLE 0.40 0.34 0.32 0.35 0.24 0.40 0.40 0.33 0.36 0.23 0.30 0.33 0.37
LE 0.38 0.38 0.38 0.36 0.35 0.38 0.38 0.38 0.38 0.32 0.33 0.36 0.48

USPS PCA 0.27 0.29 0.25 0.28 0.26 0.29 0.29 0.28 0.24 0.29 0.26 0.26 0.28
small MMF 0.21 0.20 0.21 0.22 0.21 0.21 0.21 0.22 0.21 0.27 0.23 0.25 0.27

(n = 3500 GLPCA 0.20 0.20 0.21 0.23 0.23 0.21 0.21 0.22 0.21 0.26 0.24 0.24 0.28
p = 256) RPCA 0.26 0.25 0.23 0.24 0.22 0.26 0.26 0.25 0.24 0.26 0.24 0.23 0.30

RPCAG 0.20 0.20 0.21 0.20 0.21 0.20 0.21 0.21 0.21 0.21 0.22 0.23 0.25
FRPCAG 0.20 0.20 0.20 0.19 0.20 0.20 0.19 0.17 0.17 0.21 0.22 0.22 0.23

CPCA (2,1) 0.20 0.20 0.21 0.20 0.22 0.20 0.22 0.22 0.21 0.23 0.23 0.25 0.28
k-means 0.26 0.26 0.26 0.26 0.28 0.27 0.26 0.26 0.26 0.26 0.25 0.34 0.30

LLE 0.51 0.29 0.22 0.21 0.22 0.22 0.22 0.22 0.21 0.22 0.19 0.26 0.31
LE 0.33 0.32 0.32 0.27 0.27 0.32 0.34 0.31 0.34 0.35 0.44 0.49 0.53

USPS PCA 0.21 0.21 0.21 0.22 0.21 0.21 0.21 0.22 0.21 0.22 0.23 0.23 0.23
large MMF 0.24 0.23 0.23 0.24 0.24 0.19 0.23 0.22 0.23 0.24 0.25 0.26 0.26

(n = 10000 GLPCA 0.16 0.16 0.17 0.17 0.16 0.17 0.15 0.15 0.17 0.18 0.19 0.21 0.23
p = 256) FRPCAG 0.15 0.16 0.17 0.15 0.14 0.16 0.16 0.16 0.17 0.18 0.21 0.21 0.21

CPCA (10,2) 0.15 0.14 0.14 0.15 0.14 0.14 0.14 0.13 0.14 0.18 0.19 0.22 0.24

are highlighted in bold and the second best in blue. From
Tables 2 & 3 it is clear that our proposed CPCA model
attains comparable clustering results to the state-of-the-art
RPCAG and FRPCAG models and better than the others in
most of the cases.

It is interesting to compare 1) the time needed for FRPCAG
and CPCA to perform clustering 2) the corresponding clus-
tering error and 3) the sub-sampling rates in CPCA. Table
3 shows such a comparison for 70,000 digits of MNIST
with (10, 2) times downsampling on the (columns, rows)
respectively for CPCA. The time needed by CPCA is an
order of magnitude lower than FRPCAG. Surprisingly, the
error of CPCA is also lower than FRPCAG. Such cases can
also be observed in USPS dataset (Table 2). Downsam-
pling removes spurious samples sometimes and the voting
scheme (Section 6) becomes robust to these samples which
lie on the cluster borders. Note that the time reported here
does not include the construction of graphs Gr, Gc as both
methods use the same graphs. Furthermore, these graphs
can be constructed in the order of a few seconds if parallel
processing is used. The time for CPCA includes steps 2 to
5 and 7 of Table 1.

Table 3. Clustering error and computational times of FRPCAG
and CPCA on MNIST dataset (784 × 70,000). For CPCA the
columns and rows of MNIST dataset were downsampled by 10
and 2 respectively. The time reported here corresponds to steps 2
to 5 and 7 of Table 1 and algorithm 1 of (Shahid et al., 2015b) for
FRPCAG excluding the construction of graphs Gr, Gc.

Model FRPCAG CPCA (10,2)
Error 0.25 0.24

time (secs) 350 58

Table 4 shows the variation of clustering error of CPCA

with different downsampling factors across rows and
columns of the USPS dataset (256 × 10, 000). Obviously,
higher downsampling results in an increase in the cluster-
ing error. However, note that we can downsample the sam-
ples (columns) by a factor of 5 without observing an error
increase. The downsampling of features results in an error
increase because the number of features for this dataset is
only 256 and downsampling results in a loss of informa-
tion. Similar behavior can also be observed for the ORL
small and ORL large datasets in Table 10 where the perfor-
mance of CPCA is slightly worse than FRPCAG because
the number of samples n for ORL is only 400.

Table 4. Variation of clustering error of CPCA with different uni-
form downsampling schemes / factors across rows and columns
of the USPS dataset (256× 10, 000).

downsampling
(rows / cols) 1 5 10 15 20

1 0.16 0.16 0.21 0.21 0.21
2 0.21 0.23 0.23 0.24 0.25
4 0.26 0.30 0.31 0.31 0.31

Table 12 in Appendix A.8 shows that the rank of the data
is preserved under the proposed downsampling framework
even in the presence of noise. For clustering experiments,
the lowest error with CPCA occurs when the rank ≈ num-
ber of clusters, which is an underlying assumption for low-
rank matrices on graphs.

8.2. Low-rank recovery
In order to demonstrate the effectiveness of our model to re-
cover low-rank static background from videos we perform
experiments on 1000 frames of 3 videos available online.
All the frames are vectorized and arranged in a data matrix
Y whose columns correspond to frames. The graph Gc is
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original RPCA RPCAG FRPCAG CPCA (5,1) CPCA (10,4) 

(a) Static background separation from videos using different PCA based models. The first row corresponds to a frame from the video of
a shopping mall lobby, the second row to a restaurant food counter and the third row to an airport lobby. The leftmost plot in each row
shows the actual frame, the other 5 show the recovered low-rank using RPCA, RPCAG, FRPCAG and CPCA with two different uniform
downsampling schemes.

alternate decoder
Comparison of decoders for CPCA

approximate decoder 1 approximate decoder 2 approximate decoder 3

(b) A quality comparison of various low-rank decoders discussed in this work.

constructed between the columns of Y and the graph Gr is
constructed between the rows of Y following the method-
ology of Section 2.1. Fig. 1a shows the recovery of low-
rank frames for one actual frame of each of the videos.
The leftmost plot in each row shows the actual frame, the
other 5 show the recovered low-rank representations using
RPCA, RPCAG, FRPCAG and CPCA with two different
uniform downsampling rates. For CPCA the approximate
decoder (16) of Section 5.3 is used and k is set such that
Σ̃k,k/Σ̃1,1 < 0.1. For the 2nd and 3rd rows of Fig. 1a it
can be seen that our proposed model is able to separate the
static backgrounds very accurately from the moving people
which do not belong to the static ground truth. However,
the quality is slightly compromised in the 1st row where
the shadow of the person appears in the low-rank frames
recovered with CPCA. In fact, this person remains static
for a long time in the video and the uniform sampling com-
promises the quality slightly. The speed-up observed for
these experiments from Table 5 is 10 times over FRPCAG
and 1000 times over RPCA and RPCAG.

Fig. 1b presents a comparison of the quality of the low-rank

static background extracted using the alternate (7) and ap-
proximate decoders discussed in (16) and Appendix A.7 for
a video (1st row) of Fig. 1a. Clearly, the alternate decoder
performs slightly better than the approximate decoders but
at the price of tuning of two model parameters. Fig. 13 in
Appendix A.8 presents a comparison of the quality of low-
rank for the same video extracted using the approximate
decoder (16) using different downsampling factors on the
pixels and frames. It is obvious that the quality of low-rank
remains intact even with higher downsampling factors.

Table 5. Computational time in seconds of RPCA, RPCAG, FR-
PCAG and CPCA for low-rank recovery of different videos in Fig.
1a. The time reported here corresponds to steps 2 to 5 and 7 of Ta-
ble 1, algorithm 1 of (Shahid et al., 2015b) for FRPCAG, (Candès
et al., 2011) for RPCA and (Shahid et al., 2015a) for RPCAG,
excluding the construction of graphs Gr, Gc.

Videos RPCA RPCAG FRPCAG CPCA (5,1) CPCA (10,4)
1 2700 3550 120 21 8
2 1650 2130 85 15 6
3 3650 4100 152 32 11
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9. Conclusion
We present Compressive PCA on Graphs (CPCA) which
approximates a recovery of low-rank matrices on graphs
from their sampled measurements. It is supported by the
proposed restricted isometry property (RIP) which is re-
lated to the coherence of the eigenvectors of graphs be-
tween the rows and columns of the data matrix. Accom-
panied with several efficient, parallel, parameter free and
low-cost decoders, the presented framework gains a sev-
eral orders of magnitude speed-up over the low-rank re-
covery methods like Robust PCA. Our theoretical analysis
reveals that CPCA targets exact recovery for low-rank ma-
trices which are clusterable across the rows and columns.
Extensive clustering experiments on 5 datasets with vari-
ous types of noise and comparison with 11 state-of-the-art
methods reveal the efficiency of our model. CPCA also
achieves state-of-the-art results for background separation
from videos. The overall complexity is dominated only by
the construction of graphs which can be done in parallel
using approximate nearest neighbors search.
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dergheynst, Pierre. Random sampling of bandlimited
signals on graphs. arXiv preprint arXiv:1511.05118,
2015.

Rahmani, Mostafa and Atia, George. High dimensional low
rank plus sparse matrix decomposition. arXiv preprint
arXiv:1502.00182, 2015a.



Compressive PCA on Graphs

Rahmani, Mostafa and Atia, George K. Randomized robust
subspace recovery for big data. In Machine Learning
for Signal Processing (MLSP), 2015 IEEE 25th Interna-
tional Workshop on, pp. 1–6. IEEE, 2015b.

Roweis, Sam T and Saul, Lawrence K. Nonlinear dimen-
sionality reduction by locally linear embedding. Science,
290(5500):2323–2326, 2000.

Sankaranarayanan, Jagan, Samet, Hanan, and Varshney,
Amitabh. A fast all nearest neighbor algorithm for appli-
cations involving large point-clouds. Computers &amp;
Graphics, 31(2):157–174, 2007.

Shahid, Nauman, Kalofolias, Vassilis, Bresson, Xavier,
Bronstein, Michael, and Vandergheynst, Pierre. Robust
principal component analysis on graphs. arXiv preprint
arXiv:1504.06151, 2015a.

Shahid, Nauman, Perraudin, Nathanael, Kalofolias, Vas-
silis, and Vandergheynst, Pierre. Fast robust pca on
graphs. arXiv preprint arXiv:1507.08173, 2015b.

Shuman, David I, Narang, Sunil K, Frossard, Pascal, Or-
tega, Antonio, and Vandergheynst, Pierre. The emerging
field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irreg-
ular domains. Signal Processing Magazine, IEEE, 30
(3):83–98, 2013.

Susnjara, Ana, Perraudin, Nathanael, Kressner, Daniel, and
Vandergheynst, Pierre. Accelerated filtering on graphs
using lanczos method. arXiv preprint arXiv:1509.04537,
2015.

Tropp, Joel A. On the conditioning of random subdictionar-
ies. Applied and Computational Harmonic Analysis, 25
(1):1–24, 2008.

Witten, Rafi and Candes, Emmanuel. Randomized algo-
rithms for low-rank matrix factorizations: sharp perfor-
mance bounds. Algorithmica, pp. 1–18, 2013.

Zhang, Zhenyue and Zhao, Keke. Low-rank matrix approx-
imation with manifold regularization. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 35(7):
1717–1729, 2013.



Compressive PCA on Graphs

A. Appendices
A.1. Proof of theorem 1

Proof. We start with the sampling of the rows. Theorem 5 in (Puy et al., 2015) shows that for any δr, εr ∈ (0, 1), with
probability at least 1− εr,

(1− δr)‖z‖22 ≤
p

ρr
‖Mrz‖22 ≤ (1 + δr)‖z‖22

for all z ∈ span(Pkr ) provided that

ρr ≥
3

δ2r
ν2kr log

(
2kr
εr

)
. (19)

Notice that Theorem 5 in (Puy et al., 2015) is a uniform result. As a consequence, with probability at least 1− εr,

(1− δr)‖yi‖22 ≤
p

ρr
‖Mryi‖22 ≤ (1 + δr)‖yi‖22, i = 1, . . . , n, (20)

for all y1, . . . , yn ∈ span(Pkr ) provided that (19) holds. Summing the previous inequalities over all i shows that, with
probability at least 1− εr,

(1− δr)‖Y ‖2F ≤
p

ρr
‖MrY ‖2F ≤ (1 + δr)‖Y ‖2F , (21)

for all Y ∈ <p×n with column-vectors in span(Pkr ).

Let us continue with the sampling of the columns. Again, Theorem 5 in (Puy et al., 2015) shows that for any δc, εc ∈ (0, 1),
with probability at least 1− εc,

(1− δc)‖w‖22 ≤
n

ρc
‖w>Mc‖22 ≤ (1 + δc)‖w‖22

for all w ∈ span(Qkc) provided that

ρc ≥
3

δ2c
ν2kc log

(
2kc
εc

)
. (22)

As a consequence, with probability at least 1− εc,

(1− δc)‖zi‖22 ≤
n

ρc
‖z>i Mc‖22 ≤ (1 + δc)‖zi‖22, i = 1, . . . , ρr, (23)

for all z1, . . . , zρr ∈ span(Qkc) provided that (22) holds. Summing the previous inequalities over all i shows that, with
probability at least 1− εc,

(1− δc)‖Z‖2F ≤
n

ρc
‖ZMc‖2F ≤ (1 + δc)‖Z‖2F (24)

for all Z ∈ <ρr×n with row-vectors in span(Qkc). In particular, this property holds, with at least the same probability, for
all matrices Z of the form MrY where Y ∈ <p×n is a matrix with row-vectors in span(Qkc).

We now continue by combining (21) and (24). We obtain that

(1− δc)(1− δr)‖Y ‖2F ≤
np

ρcρr
‖MrYMc‖2F ≤ (1 + δc)(1− δr)‖Y ‖2F (25)

for all Y ∈ Rp×n with column-vectors in span(Pkr ) and row-vectors in span(Qkc), provided that (19) and (22) hold. It
remains to compute the probability that (25) holds. Property (25) does not hold if (21) or (24) do not hold. Using the union
bound, (25) does not hold with probability at most εr + εc. To finish the proof, one just need to choose εr = εc = ε/2 and
δr = δc = δ/3, and notice that (1 + δ/3)2 ≤ 1 + δ and (1− δ/3)2 ≥ 1− δ for δ ∈ (0, 1).
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A.2. Proof of Theorem 2

Proof. Using the optimality condition we have, for any Z ∈ Rp×n,

‖MrX
∗Mc − X̃‖F ≤ ‖MrZMc − X̃‖F .

For Z = X̄ , we have

‖MrX
∗Mc − X̃‖F ≤ ‖MrX̄Mc − X̃‖F ,

which gives

‖MrX
∗Mc −MrX̄Mc − Ẽ‖F ≤ ‖Ẽ‖F .

As (3) holds, we have

‖MrX
∗Mc −MrX̄Mc − Ẽ‖F ≥ ‖Mr(X

∗ − X̄)Mc‖F − ‖Ẽ‖F

≥

√
ρrρc(1− δ)

np
‖X∗ − X̄‖F − ‖Ẽ‖F .

Therefore, we get

‖X∗ − X̄‖F ≤ 2

√
np

ρrρc(1− δ)
‖Ẽ‖F .

A.3. Proof of Theorem 3

Proof. Using the optimality condition we have for any Z ∈ <p×n and optimal solution X∗ = X̄∗ + E∗:

‖MrX
∗Mc−X̃‖2F + γ̄c tr(X∗LcX∗>)+ γ̄r tr(X∗>LrX∗) ≤ ‖MrZMc−X̃‖2F + γ̄c tr(ZLcZ>)+ γ̄r tr(Z>LrZ) (26)

using Z = X̄ = PkrYbQ
>
kc

as in the proof of theorem 2 in (Shahid et al., 2015b), where Yb ∈ <kr×kc and it is not
necessarily diagonal. Note that ‖Yb‖F = ‖X̄‖F , Q>kcQkc = Ikc , P>krPkr = Ikr , Q̄>kcQkc = 0, P̄>krPkr = 0. From the
proof of theorem 2 in (Shahid et al., 2015b) we also know that:

tr(X̄Lc(X̄)>) ≤ λkc‖X̄‖2F
tr(X̄>Lr(X̄)) ≤ λkr‖X̄‖2F

tr(X∗Lc(X∗)>) ≥ λkc+1
‖X∗Q̄kc‖2F

tr(X∗Lr(X∗)>) ≥ λkr+1‖P̄>krX
∗‖2F

Now using all this information in (26) we get

‖MrX
∗Mc − X̃‖2F + γ̄cλkc+1‖X∗Q̄kc‖2F + γ̄rλkr+1‖P̄>krX

∗‖2F ≤ ‖Ẽ‖2F + (γ̄cλkc + γ̄rλkr )‖X̄‖2F

From above we have:
‖MrX

∗Mc − X̃‖F ≤ ‖Ẽ‖F +
√

(γ̄cλkc + γ̄rλkr )‖X̄‖F (27)

and √
(γ̄cλkc+1‖X∗Q̄kc‖2F + γ̄rλkr+1‖P̄>krX

∗‖2F ) ≤ ‖Ẽ‖F +
√

(γ̄cλkc + γ̄rλkr )‖X̄‖F (28)

using

γ̄c = γ
1

λkc+1
and γ̄r = γ

1

λkr+1
,



Compressive PCA on Graphs

and
‖E∗‖2F = ‖X∗Q̄kc‖2F = ‖P̄>krX

∗‖2F
we get:

‖MrX
∗Mc − X̃‖F ≤ ‖Ẽ‖F +

√
γ
( λkc
λkc+1

+
λkr
λkr+1

)
‖X̄‖F (29)

and √
2γ‖E∗‖F ≤ ‖Ẽ‖F +

√
γ
( λkc
λkc+1

+
λkr
λkr+1

)
‖X̄‖F (30)

which implies

‖E∗‖F ≤
‖Ẽ‖F√

2γ
+

1√
2

√
γ
( λkc
λkc+1

+
λkr
λkr+1

)
‖X̄‖F (31)

Focus on ‖MrX
∗Mc − X̃‖2F now. As Mr,Mc are constructed with a sampling without replacement, we have

‖MrE
∗Mc‖F ≤ ‖E∗‖F . Now using the above facts and the RIP we get:

‖MrX
∗Mc − X̃‖F = ‖Mr(X̄

∗ + E∗)Mc −MrX̄Mc − Ẽ‖F

≥

√
ρrρc(1− δ)

np
‖X̄∗ − X̄‖F − ‖Ẽ‖F − ‖E∗‖F

this implies

‖X̄∗ − X̄‖F ≤
√

np

ρcρr(1− δ)

[(
2 +

1√
2γ

)
‖Ẽ‖F + (

1√
2

+
√
γ)

√( λkc
λkc+1

+
λkr
λkr+1

)
‖X̄‖F

]

Discussion Let A1, A2 ∈ <p×n and A1 = U1S1V
T
1 , A2 = U2S2V

T
2 then if ‖A1 −A2‖2F → 0, then S1 → S2.

We observe that
‖A1 −A2‖2F = ‖U1S1V

T
1 − U2S2V

T
2 ‖2F = ‖UT2 U1S1V

T
1 V2 − S2‖2F

which implies that UT2 U1S1V
T
1 V2 ≈ S2. This is equivalent to saying that for the significant values of S2, the orthonormal

matrices UT2 U1 and V T1 V2 have to be almost diagonal. As a result, for the significant values of S2, U2 and V2 have to be
aligned with U1 and V1. The same reason also implies that S1 ≈ S2.

A.4. Solution of eq. (9)

Let us examine how to solve (9). The problem can be reformulated as:

min
U

tr(U>LrU) s.t: U>U = Ik, ‖MrU − Ũ‖2F < ε

Let U
′

is the zero appended matrix of Ũ , then we can re-write it as:

min
U

tr(U>LrU) s.t: U>U = Ik, ‖Mr(U − U
′
)‖2F < ε

The above problem is equivalent to (9), as the term ‖Mr(U − U
′
)‖2F has been removed from the objective and introduced

as a constraint. Note that the constant γr is not needed anymore. The new model parameter ε controls the radius of the L2

ball ‖Mr(U − U
′
)‖2F . In simple words it controls how much noise is tolerated by the projection of U on the ball that is

centered at U
′
. To solve the above problem one needs to split it down into two sub-problems and solve iteratively between:

1. The optimization minU tr(U>LrU) s.t: U>U = Ik. The solution to this problem is given by the lowest k eigen-
vectors of Lr. Thus it requires a complexity of O((n+ p)k2) for solving both problems (9).

2. The projection on the L2 ball ‖Mr(U − U
′
)‖2F whose complexity is O(ρc + ρr).

Thus the solution requires a double iteration with a complexity of O(Ink2) and is almost as expensive as FRPCAG.
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A.5. Proof of Theorem 4

Proof. We can write (10) and (11) as following:

min
u1···up

p∑
i=1

[
‖Mrui − ũi‖22 + γ

′

ru
>
i Lrui

]
(32)

min
v1···vn

n∑
i=1

[
‖M>c vi − ṽi‖22 + γ

′

cv
>
i Lcvi

]
(33)

In this proof, we only treat Problem (32) and the recovery of Ū . The proof for Problem (11) and the recovery of V̄ is
identical. The above two problems can be solved independently for every i. From theorem 3.2 of (Puy et al., 2015) we
obtain:

‖ū∗i − ūi‖2 ≤
√

p

ρr(1− δ)

[(
2 +

1√
γ′rλkr+1

)
‖ẽui ‖2 +

(√
λkr
λkr+1

+
√
γ′rλkr

)
‖ūi‖2

]
,

and

‖e∗i ‖2 ≤
1√

γ′rλkr+1

‖ẽui ‖2 +

√
λkr
λkr+1

‖ūi‖2,

which implies

‖ū∗i − ūi‖22 ≤ 2
p

ρr(1− δ)

(2 +
1√

γ′rλkr+1

)2

‖ẽui ‖22 +

(√
λkr
λkr+1

+
√
γ′rλkr

)2

‖ūi‖22

 ,
and

‖e∗i ‖22 ≤
2

γ′rλkr+1
‖ẽui ‖22 + 2

λkr
λkr+1

‖ūi‖22.

Summing the previous inequalities over all i’s yields

‖Ū∗ − Ū‖2F ≤ 2
p

ρr(1− δ)

(2 +
1√

γ′rλkr+1

)2

‖Ẽu‖2F +

(√
λkr
λkr+1

+
√
γ′rλkr

)2

‖Ū‖2F

 ,
and

‖E∗‖2F ≤
2

γ′rλkr+1
‖Ẽu‖2F + 2

λkr
λkr+1

‖Ū‖2F .

Taking the square root of both inequalities terminates the proof. Similarly, the expressions for V̄ can be derived:

‖V̄ ∗ − V̄ ‖F ≤

√
2n

ρc(1− δ)

[(
2 +

1√
γ′cλkc+1

)
‖Ẽv‖F +

(√
λkc
λkc+1

+
√
γ′cλkc

)
‖V̄ ‖F

]

and

‖E∗‖F ≤

√
2

γ′cλkc+1
‖Ẽv‖F +

√
2
λkc
λkc+1

‖V̄ ‖F .
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A.6. Proof of Lemma 1

Proof. Let S = [S>a |S>b ]>. Further we split L into submatrices as follows:

L =

[
Laa Lab
Lba Lbb

]
Now (15) can be written as:

min
Sa

[
Sa
Sb

]> [ Laa Lab
Lba Lbb

] [
Sa
Sb

]
s.t: Sb = R

further expanding we get:
min
Sa

S>a LaaSa + S>a LabR+R>LbaSa +RLbbR

using ∇Sa = 0, we get:
2LabR+ 2LaaSa = 0

Sa = −L−1aaLabR

A.7. Approximate decoders 2 and 3

Approximate decoder 2:

Alternatively, if we have access to the complete data matrix Y then we can reduce the complexity further by performing
a graph-upsampling for only one of the two subspaces U and V . Suppose we do the upsampling only for U , then the
approximate decoder 2 can be written as:

min
U

tr(U>LrU)

s.t: MrU = Ũ .

The solution for U is given by eq. 16. Then, we can write V as:

V = Y >U Σ̃−1

√
ρcρr(1− δ)

np

However, we do not need to explicitly determine V here. Instead the low-rank X can be determined directly from U with
the projection given below:

X = U Σ̃

√
np

ρcρr(1− δ)
V > = U Σ̃

√
np

ρcρr(1− δ)
(Y >U Σ̃−1)>

√
ρcρr(1− δ)

np
= UU>Y.

Approximate decoder 3:

Similar to the approximate decoder 2, we can propose another approximate decoder 3 which performs a graph upsampling
on V and then determines U via matrix multiplication operation.

min
V

tr(V >LcV )

s.t: M>c V = Ṽ
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The solution for V is given by eq. 16. Using the similar trick as for the approximate decoder 2, we can compute X without
computing U . Therefore,

X = Y V V >

For the proposed approximate decoders, we would need to do one SVD to determine the singular values (̃Σ). However,
note that this SVD is on the compressed matrix X̃ ∈ <ρr×ρc . Thus, it is inexpensive O(ρ2rρc) assuming that ρr < ρc.

A.8. Computational Complexities & Additional Results

We present the computational complexity of all the models considered in this work. For a matrix X ∈ <p×n, let I denote
the number of iterations for the algorithms to converge, p is the number of features, n is the number of samples, ρr, ρc
are the number of features and samples for the compressed data Ỹ and satisfy eq. (2) and theorem 1, k is the rank of
the low-dimensional space or the number of clusters, K is the number of nearest neighbors for graph construction, Ol, Oc
correspond to the number of iterations in the Lancoz and Chebyshev approximation methods. All the models which use
the graph Gc are marked by ’+’. The construction of graph Gr is included only in FRPCAG and CPCA. Furthermore,

1. We assume that K, k, ρr, ρc, p << n and n+ p+ k +K + ρr + ρc ≈ n.
2. The complexity of ‖Y −X‖1 is O(np) per iteration and that of ‖Ỹ − X̃‖1 is O(ρcρr).
3. The complexity of the computations corresponding to the graph regularization tr(XLcX>) + tr(X>LrX) =
O(p|Ec| + n|Er|) = O(pnK + npK), where Er, Ec denote the number of non-zeros in Lr,Lc respectively. Note
that we use the K-nearest neighbors graphs so Er ≈ Kp and Ec ≈ Kn.

4. The complexity for the construction of L̃c and L̃r for compressed data Ỹ is negligible if FLANN is used, i.e,
O(ρcρr log(ρc)) and O(ρcρr log(ρr)). However, if the kron reduction strategy of Section 4 is used then the cost
is O(KOl(n+ p)) ≈ O(KOln).

5. We use the complexityO(np2) for all the SVD computations on the matrixX ∈ <p×n andO(ρcρ
2
r) for X̃ ∈ <ρc×ρr .

6. The complexity of ‖MrXMc − X̃‖2F is negligible as compared to the graph regularization terms tr(XLcX>) +
tr(X>LrX).

7. We use the approximate decoders for low-rank recovery in the complexity calculations (eq. (16) in Section 5.3). All
the decoders for low-rank recovery are summarized in Table 6.

8. The complexity of k-means (Elkan, 2003) is O(Inkp) for a matrix X ∈ <p×n and O(Iρrρck) for a matrix X̃ ∈
<ρr×ρc .
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Table 6. A summary and computational complexities of all the de-
coders proposed in this work. The Lancoz method used here is
presented in (Susnjara et al., 2015).

Type Low-rank
model complexity Algo parallel

minX ‖MrXMc − X̃‖2F O(n3) – –
ideal s.t: X> ∈ span(Qkc)

X ∈ span(Pkr )

minX ‖MrXMc − X̃‖2F O(InpK) gradient no
alter- +γc tr(XLcX>) descent
nate +γr tr(X>LrX)

minU ‖MrU − Ũ‖2F O(InK) gradient yes
+γ
′

r tr(U>LrU) descent
approx-
imate minV ‖M>c V − Ṽ ‖2F O(IpK) gradient yes

+γ
′

c tr(V >LcV ) descent

X = U Σ̃V > O(ρ2rρc) SVD

minU tr(U>LrU) O(pkOlK) Lancoz
s.t:MrU = Ũ

approx-
imate 1 minV tr(V >LcV ) O(nkOlK) Lancoz yes

s.t:M>c V = Ṽ

X = U Σ̃V > O(ρ2rρc) SVD

minU tr(U>LrU) O(pkOlK) Lancoz yes
s.t:MrU = Ũ

approx-
imate 2 X = UU>Y

minV tr(V >LcV ) O(nkOlK) Lancoz yes
s.t:M>c V = Ṽ

approx-
imate 3 X = Y V V >
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Table 8. Details of the datasets used for clustering experiments in this work.

Dataset Samples Dimension Classes
ORL large 400 56× 46 40
ORL small 300 28× 23 30
CMU PIE 1200 32× 32 30

YALE 165 32× 32 11
MNIST 70000 28× 28 10

USPS large 10000 16× 16 10
USPS small 3500 16× 16 10

Table 9. Range of parameter values for each of the models considered in this work. k is the rank or dimension of subspace or the number
of clusters, λ is the weight associated with the sparse term for Robust PCA framework (Candès et al., 2011) and γ, α are the parameters
associated with the graph regularization term.

Model Parameters Parameter Range
LLE (Roweis & Saul, 2000), PCA k k ∈ {21, 22, · · · ,min(n, p)}

LE (Belkin & Niyogi, 2003)
GLPCA (Jiang et al., 2013) k ∈ {21, 22, · · · ,min(n, p)}

k, γ γ =⇒ β using (Jiang et al., 2013) β ∈ {0.1, 0.2, · · · , 0.9}
MMF (Zhang & Zhao, 2013) k, γ k ∈ {21, 22, · · · ,min(n, p)}
NMF (Lee & Seung, 1999) k
GNMF (Cai et al., 2011) k, γ γ ∈ {2−3, 2−2, · · · , 210}

RPCA (Candès et al., 2011) λ λ ∈ { 2−3√
max(n,p)

: 0.1 : 23√
max(n,p)

}
RPCAG (Shahid et al., 2015a) λ, γ γ ∈ {2−3, 2−2, · · · , 210}

FRPCAG (Shahid et al., 2015b) γr, γc γr, γc ∈ (0, 30)
CPCA γr, γc γr, γc ∈ (0, 30)

k (approximate decoder) Σ̃k,k/Σ̃1,1 < 0.1

Table 10. ORL dataset

Data Model no noise Gaussian noise
set 5% 10% 15% 20%

k-means 0.40 0.43 0.43 0.45 0.44
LLE 0.26 0.26 0.26 0.26 0.19
LE 0.21 0.18 0.19 0.19 0.19

PCA 0.30 0.30 0.32 0.34 0.32
O MMF 0.21 0.20 0.18 0.18 0.17
R GLPCA 0.14 0.13 0.13 0.13 0.14
L NMF 0.31 0.34 0.29 0.31 0.34

GNMF 0.29 0.29 0.29 0.31 0.29
s RPCA 0.36 0.34 0.33 0.35 0.36
m RPCAG 0.17 0.17 0.17 0.16 0.16
a FRPCAG 0.15 0.15 0.15 0.14 0.16
l CPCA (2,2) 0.23 0.23 0.23 0.24 0.25
l CPCA (2,1) 0.17 0.17 0.17 0.14 0.17

k-means 0.49 0.50 0.51 0.51 0.51
LLE 0.28 0.27 0.27 0.24 0.25
LE 0.24 0.25 0.25 0.24 0.25

O PCA 0.35 0.34 0.35 0.36 0.36
R MMF 0.23 0.23 0.23 0.24 0.24
L GLPCA 0.18 0.18 0.18 0.19 0.19

NMF 0.36 0.33 0.36 0.32 0.36
l GNMF 0.34 0.37 0.36 0.39 0.39
g FRPCAG 0.17 0.17 0.17 0.17 0.17

CPCA (2,2) 0.21 0.21 0.21 0.23 0.22

Table 11. CMUPIE & YALE datasets

Data Model no noise Gaussian noise
set 5% 10% 15% 20%

k-means 0.76 0.76 0.76 0.75 0.76
LLE 0.47 0.50 0.52 0.50 0.55
LE 0.60 0.58 0.59 0.58 0.60

PCA 0.27 0.27 0.27 0.27 0.29
C MMF 0.67 0.67 0.67 0.66 0.67
M GLPCA 0.37 0.39 0.37 0.38 0.38
U NMF 0.24 0.27 0.24 0.25 0.27
P GNMF 0.58 0.59 0.56 0.58 0.59
I RPCA 0.39 0.38 0.41 0.41 0.38
E RPCAG 0.24 0.24 0.24 0.24 0.25

FRPCAG 0.23 0.24 0.24 0.24 0.24
CPCA (2,2) 0.26 0.26 0.26 0.28 0.27
CPCA (2,1) 0.28 0.29 0.29 0.30 0.30

k-means 0.76 0.76 0.76 0.76 0.77
LLE 0.51 0.47 0.46 0.49 0.50
LE 0.52 0.56 0.55 0.54 0.54

PCA 0.53 0.52 0.53 0.56 0.55
MMF 0.58 0.59 0.56 0.57 0.58

Y GLPCA 0.47 0.46 0.47 0.45 0.48
A NMF 0.57 0.58 0.59 0.57 0.59
L GNMF 0.59 0.59 0.61 0.59 0.60
E RPCA 0.45 0.48 0.46 0.46 0.48

RPCAG 0.40 0.40 0.41 0.41 0.41
FRPCAG 0.40 0.37 0.40 0.40 0.40

CPCA (2,2) 0.43 0.45 0.42 0.46 0.43
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Table 12. Preservation of the rank of the datasets in the compressed low-rank X̃ determined by solving FRPCAG (1). For this experiment,
we take different datasets and corrupt them with different types of noise and perform cross-validation for clustering using the parameter
range for CPCA mentioned in Table 9. Then we report the rank of X̃ for the parameter corresponding to the minimum clustering error.
As X̃ is approximately low-rank so we use the following strategy to determine the rank k: Σ̃k,k/Σ̃1,1 < 0.1. FRPCAG assumes that
the number of clusters ≈ rank. Our findings show that this assumption is almost satisfied for the sampled matrices even in the presence
of various types of noise. Thus, the rank is preserved under the proposed sampling strategy.

Dataset downsampling factor actual rank Rank after FRPCAG on sampled matrix
(columns, rows) Gaussian noise Laplacian noise

5% 10% 15% 5% 10% 15%
ORL large (2,1) 40 41 41 41 41 41 42
USPS large (10,2) 10 10 11 11 11 11 11

MNIST (10,2) 10 11 11 11 11 11 11
CMU PIE (2,1) 30 31 31 31 31 31 32

YALE (2,1) 11 11 11 11 11 11 11

downsampling on pixels
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Table 13. A comparison of the quality of low-rank for the shopping mall video (1st row of Fig. 1a) extracted using the approximate
decoder (16) for different downsampling factors on the pixels and frames. It is obvious that the quality of low-rank remains intact even
with higher downsampling factors.


