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We have spherical data. How can we use a neural network with them?

Project the data on the sphere to exploit the
Intrinsically spherical data: rotational symmetry of any task.

e COSMIC microwave background
* daily temperature
* brain activity (MEG)
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Projection of a 3D shape from SHREC-17.

DeepSphere:

1. Model the sampled sphere as a graph. Bonus: flexible sampling

2. Use a Laplacian-based graph neural network. Different graphs lead to different symmetries.

« Geometric graphs: translations and rotations.
« General graphs: node permutation.

=> Efficient and equivariant spherical CNN.

first convolutional layer second convolutional layer further convolutional layers spatial summarization

convolution with N; filters, convolution with N, filters, fully connected layers (CNN variant) or
activation, pooling, activation, pooling, global average pooling (FCN variant),
batch normalization batch normalization softmax normalization

W

DeepSphere v2 (coming soon):
 Empirical correspondence of the eigenspaces.

input data

Graph between weather stations. * Proof of convergence.
Eigenvalues of the graph Laplacian.
Why is your graph convolution spherical and equivariant?
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Observation: the graph Laplacian’s eigenvectors are close to the index

Mode 0: /=0, |[m|=0

spherical harmonics.

192 pixels 768 pixels 3072 pixels

Reasoning:
1. The graph Fourier transform is similar to the spherical
harmonic transform.
2. Convolution is a multiplication in the spectral domain.
3. The graph convolution is close to the spherical convolution.

Im|=2

graph eigenvectors
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Spherical harmonic transform of the graph Laplacian's eigenvectors.
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Consequence: graph convolution is (almost) rotation equivariant. =5 =20 =50
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Spatial properties of graph filters: SNNEL BN e | | | |
 |nvariant to localization => equivariance to SO(3) rotations ° P herical harmonic degreo
e |sotropic kernel Example graph filter (heat kernel).

Then, how is it different from spherical convolution? (used in [Cohen] and [Esteves])

You pay for what you use on irregular samplings,
but equivariance needs investigation.

(=) Equivariant to rotations (almost). TP e St
(++) Fast: O(N)vs O(N3/?). 0 T g e
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(++) Flexible: accommodates any sampling and partial observations. T B N

. - . . Recognition of 3D shapes (SHREC-17):
(+) Easy to implement (use general & efficient graph NN implementations). ¢

L L L o e Same accuracy as [Cohen] and [Esteves].
(?/-) Invariant instead of equivariant to the 3rd rotation (isotropic filters). _ o
 Computationally much more efficient.

Graph NNs only do same-equivariance and invariance. R
Number of pixels * |ess parameters.

=> Equivariance to 3rd rotation is an

unnecessary price to pay.

Show me some results!

performance size speed

F1 mAP params inference training

. ' A : : SO(3) [Cohen et al.] - 0.676 1400k 19.0 ms 50 h
Task: Discriminate against cosmological models. | | §2 [Esteves b al] 7936 0685 500k  98ms  3h
The goal is to identify the model that best fits our observations of the universe. eraph [DeepSphere]  80.65 0.686 190k  1.6ms  40m

Result: DeepSphere beats ConvNet on 2D projections and SVM baselines.

Too many pixels (12M) for [Cohen] and [Esteves] (which were tested on 10k pixels). _
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https://github.com/SwissDataScienceCenter/DeepSphere




