
DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix
sampling for cosmological applications

Nathanaël Perraudina, Michaël Defferrardb, Tomasz Kacprzakc, Raphael Sgierc

aSwiss Data Science Center (SDSC), Zurich, Switzerland
bInstitute of Electrical Engineering, EPFL, Lausanne, Switzerland

cInstitute for Particle Physics and Astrophysics, ETH Zurich, Switzerland

Abstract

Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many
breakthroughs in Artificial Intelligence. So far, these neural networks (NNs) have mostly been developed for regular
Euclidean domains such as those supporting images, audio, or video. Because of their success, CNN-based methods
are becoming increasingly popular in Cosmology. Cosmological data often comes as spherical maps, which make the
use of the traditional CNNs more complicated. The commonly used pixelization scheme for spherical maps is the
Hierarchical Equal Area isoLatitude Pixelisation (HEALPix). We present a spherical CNN for analysis of full and
partial HEALPix maps, which we call DeepSphere. The spherical CNN is constructed by representing the sphere as a
graph. Graphs are versatile data structures that can represent pairwise relationships between objects or act as a discrete
representation of a continuous manifold. Using the graph-based representation, we define many of the standard CNN
operations, such as convolution and pooling. With filters restricted to being radial, our convolutions are equivariant
to rotation on the sphere, and DeepSphere can be made invariant or equivariant to rotation. This way, DeepSphere is
a special case of a graph CNN, tailored to the HEALPix sampling of the sphere. This approach is computationally
more efficient than using spherical harmonics to perform convolutions. We demonstrate the method on a classification
problem of weak lensing mass maps from two cosmological models and compare its performance with that of three
baseline classifiers, two based on the power spectrum and pixel density histogram, and a classical 2D CNN. Our
experimental results show that the performance of DeepSphere is always superior or equal to the baselines. For high
noise levels and for data covering only a smaller fraction of the sphere, DeepSphere achieves typically 10% better
classification accuracy than the baselines. Finally, we show how learned filters can be visualized to introspect the NN.
Code and examples are available at https://github.com/SwissDataScienceCenter/DeepSphere.

Keywords: Spherical Convolutional Neural Network, DeepSphere, Graph CNN, Cosmological data analysis, Mass
mapping

1. Introduction

Cosmological and astrophysical data often come in
the form of spherical sky maps. Observables that cover
large parts of the sky, such as the Cosmic Microwave
Background (CMB) [1–3], neutral hydrogen [4, 5],
galaxy clustering [6], gravitational lensing [7, 8], and
others, have been used to constrain cosmological and
astrophysical models. Cosmological information con-
tained in these maps is usually extracted using sum-
mary statistics, such as the power spectra or higher order
correlation functions. Convolutional Neural Networks
(CNNs) have been proposed as an alternative analysis
tool in cosmology thanks to their ability to automati-

cally design relevant statistics to maximise the preci-
sion1 of the parameter estimation [9–16], while main-
taining robustness to noise. This is possible as neural
networks (NNs) have the capacity to build rich mod-
els and capture complicated non-linear patterns often
present in the data. CNNs are particularly well suited
for the analysis of cosmological data as their trainable
weights are shared across the domain, i.e., the network
does not have to relearn to detect objects or features at
every spatial location.

1Here, the word “precision” is to be understood as the final size
of the posterior distribution on the measured parameters (including
systematic errors).

Preprint submitted to Astronomy and Computing May 15, 2019

https://github.com/SwissDataScienceCenter/DeepSphere

Figure 1: Overall NN architecture, showing here three convolutional layers acting as feature extractors followed by three fully connected layers with
softmax acting as the classifier. A convolutional layer is based on five operations: convolution, non-linearity, batch normalization, down-sampling,
and pooling. While most operations are agnostic to the data domain, the convolution and the down-sampling have to be adapted. In this paper, we
propose first to model the sphere with a graph and to perform the convolution on the graph. Graphs are versatile data structures which can model
any sampling, even irregular or partial. Second, we propose to exploit a hierarchical pixelization of the sphere for the down-sampling operation. It
allows the NN to analyze the data at multiple scales while preserving the spatial localization of features. This figure shows a network that operates
on the whole sphere. The process is the same when working with partial observations, except that the graph is only built for the region of interest.

So far these algorithms have mostly been demon-
strated on Euclidean domains, such as images. The
main challenge in designing a CNN on the sphere is to
define a convolution operation that is suitable for this
domain, while taking care of the necessary irregular
sampling. Moreover, the designed convolution and re-
sulting NN should possess the following three key char-
acteristics. First, the convolution should be equivariant
to rotation, meaning that a rotation of the input implies
the same rotation of the output. Sky maps are rota-
tion equivariant: rotating a map on the sphere doesn’t
change its interpretation. Depending on the task, we
want the CNN to be either equivariant or invariant to
rotation.2 Second, to be able to train the network in rea-
sonable time, the convolution has to be computationally
efficient. Third, a CNN should work well on parts of the
sphere, as many cosmological observations cover only a
part of the sky. For ground-based observations this can
be due to limited visibility of the sky from a particular
telescope location, and for space-based instruments due
to masking of the galactic plane area (see Figure 2 for
example maps).

Three ways of generalizing CNNs to spherical data
have been pursued. One approach is to apply a standard
2D CNN to a grid discretisation of the sphere [20–22].
An alternative is to divide the sphere into small chunks
and project those on flat 2D surfaces [9, 11, 12, 23].

2When only the statistics of the maps are relevant, they are rotation
invariant.

While these approaches use the well-developed 2D con-
volution and hierarchical pooling, they are not equivari-
ant to rotation. Another way is to leverage the spherical
Fourier transform and to perform the convolution asso-
ciated to the SO(3) rotation group in the spectral do-
main, thanks to the convolution theorem [24, 25]. While
the resulting convolution is equivariant to rotation, this
approach is computationally expensive, even if a fast
spherical Fourier transform is used. Moreover, all those
methods cannot be much accelerated when maps only
span a part of the sky.

Our spherical CNN leverages convolutions on graphs
and hierarchical pooling to achieve the following prop-
erties: (i) rotation equivariance, (ii) computational effi-
ciency, and (iii) partial sky observations. The main idea
is to model the discretised sphere as a graph of con-
nected pixels: the length of the shortest path between
two pixels is an approximation of the geodesic distance
between them. We use the graph CNN formulation in-
troduced in [26], and a pooling strategy that exploits
a hierarchical pixelisation of the sphere to analyse the
data at multiple scales. As the Equal Area isoLatitude
Pixelisation (HEALPix) [27] is a popular sampling used
in cosmology and astrophysics, we tailored the method
to that particular sampling. DeepSphere is, however,
easily used with other samplings as only two elements
depend on it: (i) the choice of neighboring pixels when
building the graph, and (ii) the choice of parent pixels
when building the hierarchy. The flexibility of modeling
the data domain with a graph allows one to easily model

2

CMB temperature map
(Planck 2015)

-0.00025 0.00025

galaxy count
(SDSS DR14)

0 6

simulated weak lensing mass map
(DES DR1 area)

-0.014 0.02

Figure 2: Example maps on the sphere: (left) the CMB temperature (K) map from Planck [17], with galactic plane masked, (middle) map of
galaxy number counts (number of galaxies per arcmin2) in SDSS DR14 [18], and (right) simulated weak lensing convergence map (dimensionless)
simulated with DES DR1 mask [19]. These maps were pixelised using Nside = 512. The CMB and weak lensing mass maps were smoothed with
Gaussian kernels with FWHM=1 deg, and the galaxy count map with FWHM=0.5 deg.

data that spans only a part of the sphere, or data that is
not uniformly sampled. Using a k-nearest neighbours
graph, the convolution operation costs O(Npix) opera-
tions, where Npix is the number of pixels. This is the
lowest possible complexity for a convolution without
approximations. DeepSphere is readily apt to solve four
tasks: (i) global classification (i.e., predict a class from a
map), (ii) global regression (i.e., predict a set of param-
eters from a map), (iii) dense classification (i.e., predict
a class for each pixel of a map), and (iv) dense regres-
sion, (i.e., predict a set of maps from a map). Input data
are spherical maps with a single value per pixel, such as
the CMB temperature, or multiple values per pixel, such
as surveys at multiple radio frequencies.

We give a practical demonstration of DeepSphere on
cosmological model discrimination using maps of pro-
jected mass distribution on the sky [28]. These kind
of maps can be created using the gravitational lensing
technique [see 29, for review]. Our maps are similar
to the ones used by [9]. In a simplified scenario, we
classify partial sky convergence maps into two cosmo-
logical models. These models were designed to have
very similar angular power spectrum. We compare the
performance of DeepSphere to three baselines: a 2D
CNN, and an SVM classifier that takes pixel histograms
or power spectral densities (PSDs) of these maps as in-
put. The comparison is made as a function of the ad-
ditive noise level and the area of the sphere used in the
analysis. Results show that our model is always better
at discriminating the maps, especially in the presence of
noise. DeepSphere is implemented with TensorFlow

[30] and is intended to be easy to use out-of-the-box for
cosmological applications. Many plots and co PyGSP
[31] for computations and plots. The Python Graph Sig-
nal Processing package (PyGSP) [31] is used to build
graphs, compute the Laplacian and Fourier basis, and
perform graph convolutions. Code and examples are
available online.3

2. Method

A CNN is composed of the following main building
blocks [32]: (i) a convolution, (ii) a non-linearity, and,
optionally, (iii) a down-sampling operation, (iv) a pool-
ing operation, and (v) a normalization.4 Our architec-
ture is depicted in Figure 1 and discussed in greater de-
tails in Section 2.8. As operations (ii) and (v) are point-
wise, they do not depend on the data domain. The pool-
ing operation is simply a permutation invariant aggrega-
tion function which does not need to be adapted either.
The convolution and down-sampling operations, how-
ever, need to be generalized from Euclidean domains to
the sphere.

On regular Euclidean domains, such as 1-
dimensional time series or 2-dimensional images,
a convolution can be efficiently implemented by sliding
a localized convolution kernel (for example a patch

3https://github.com/SwissDataScienceCenter/
DeepSphere/

4Batch normalization has been shown to help training [33]. We
verified this experimentally in our setting as well.

3

https://github.com/SwissDataScienceCenter/DeepSphere/
https://github.com/SwissDataScienceCenter/DeepSphere/

of 5 × 5 pixels) in the signal domain. Because of the
irregular sampling, there is no straightforward way
to define a convolution on the sphere directly in the
pixel domain; convolutions are most often performed
using spherical harmonics. In our method we also
use the spectral domain to define the convolution.
The implementation, however, does not need a direct
access to the spectrum, which is computationally more
efficient (see Section 2.5).

Down-sampling is achieved on regular Euclidean do-
mains by keeping one pixel every n pixels in every di-
mension. That is again not a suitable strategy on the
sphere because of the irregular sampling.

The gist of our method is to define the convolution
operation on a sphere using a graph, and the down-
sampling operation using a hierarchical pixelisation of
the sphere.

2.1. HEALPix sampling
Before doing any numerical analysis on the sphere,

one first has to choose a tessellation, i.e., an exhaustive
partition of the sphere into finite area elements, where
the data under study is quantized. The simplicity of the
spherical form belies the intricacy of global analysis on
the sphere: there is no known point set that achieves
the analogue of uniform sampling in Euclidean space.
While our method is applicable to any pixelisation of
the sphere, two details depend on the chosen sampling:
(i) the choice of neighbours in the construction of the
graph, and (ii) the choice of parent vertices when coars-
ening the graph. As HEALPix [27] is our target applica-
tion, we tailor the method to that particular sampling in
the subsequent exposition. Figure 2 shows three exam-
ples of HEALPix maps: the Cosmic Microwave Back-
ground [17], galaxies found in Sloan Digital Sky Survey
Data Release 14 [18], and an example simulated mass
map on the footprint of Dark Energy Survey Data Re-
lease 1 [19].

HEALPix is a particular case of a more general class
of schemes based on a hierarchical subdivision of a
base polyhedron. Another example is the geodesic grids
which are based on geodesic polyhedrons, i.e., polyhe-
drons made of triangular faces. A counter-example is
the equirectangular projection, which is not constructed
from a base polyhedron, although it can be subdivided.
In the particular HEALPix case, the base is a rhombic
dodecahedron, i.e., a polyhedron made from 12 congru-
ent rhombic faces. See Figure 5 for an illustration of the
base rhombic dodecahedron and its subdivisions.

The HEALPix pixelisation produces a hierarchical
subdivision of a spherical surface where each pixel cov-
ers the same surface area as every other pixel. A hierar-

chy is desired for the data locality in the computer mem-
ory. Equal area is advantageous because white noise
generated by the signal receiver gets integrated exactly
into white noise in the pixel space. Isolatitude is essen-
tial for the implementation of a fast spherical transform.
HEALPix is the sole pixelisation scheme which satisfies
those three properties.

The lowest possible resolution is given by the base
partitioning of the surface into Npix = 12 equal-sized
pixels (right-most sphere in Figure 5). The resolution
changes as Npix = 12N2

side such that Npix = 48 for
Nside = 2 and Npix = 192 for Nside = 3. High-
resolutions maps easily reach millions of pixels.

2.2. Graph construction
Our graph is constructed as an approximation of the

sphere S 2, a 2D manifold embedded in R3. Indeed,
[34] showed that the graph Laplacian converges to the
Laplace-Beltrami when the number of pixels goes to in-
finity providing uniform sampling of the manifold and a
fully connected graph built with exponentially decaying
weights. While our construction does not exactly re-
spect their setting (the sampling is deterministic and the
graph is not fully connected), we empirically observe a
strong correspondence between the eigenmodes of both
Laplacians (see Appendix A).

From the HEALPix pixelization, we build a weighted
undirected graph G = (V,E,W), where V is the set of
Npix = |V| vertices, E is the set of edges, and W is the
weighted adjacency matrix. In our graph, each pixel i
is represented by a vertex (also called vertex) vi ∈ V.
Each vertex vi is then connected to the 8 (or 7)5 vertices
v j which represent the neighboring pixels j of pixel i,
forming edges (vi, v j) ∈ E. Given those edges, we define
the weighted adjacency matrix W ∈ RNpix×Npix as

Wi j =

exp
(
−
‖xi−x j‖

2
2

ρ2

)
if pixels i and j are neighbors,

0 otherwise,

where xi is a vector encoding the 3-dimensional coordi-
nates of pixel i, and

ρ =
1
|E|

∑
(vi,v j)∈E

‖xi − x j‖2

is the average Euclidean distance over all connected pix-
els. This weighting scheme is important as distances be-
tween pixels are not equal. Other weighting schemes are

5The 12 × 4 = 48 pixels at the corner of each rhombus of the base
dodecahedron only have 7 neighboring pixels. See Figures 6 and 5.

4

possible. For example, [35] uses the inverse of the dis-
tance instead. We found out that the one proposed above
works well for our purpose, and did not investigate other
approaches, leaving it to future work. Figure 6 shows
a graph constructed from the HEALPix sampling of a
sphere.

2.3. Graph Fourier basis

Following [36], the normalized graph Laplacian, de-
fined as L = I − D−1/2W D−1/2, is a second order dif-
ferential operator that can be used to define a Fourier
basis on the graph. Here D is the diagonal matrix where
Dii = di and di =

∑
j Wi j is the weighted degree of

vertex vi. By construction, the Laplacian is symmetric
positive semi-definite and hence can be decomposed as
L = UΛUᵀ, where U = [u1, . . . ,uNpix] is an orthonor-
mal matrix of eigenvectors and Λ is a diagonal matrix
of eigenvalues. The graph Fourier basis is defined as
the Laplacian eigenvectors, motivated by the fact that
a Fourier basis should diagonalize the Laplacian opera-
tor. The graph Fourier transform of a signal f ∈ RNpix

is simply its projection on the eigenvectors given by
f̂ = FG{ f } = Uᵀ f . It follows that the inverse graph
Fourier transform reads F −1

G
{ f̂ } = U f̂ = UUᵀ f = f .

Note that the Fourier modes are ordered in the increas-
ing order of the Laplacian eigenvalues Λ, which can be
interpreted as squared frequencies. Indeed,

Λii = uᵀ
i Lui =

∑
(v j,vk)∈E

W jk√
d jdk

(U ji − Uki)2

is a measure of the variation of the eigenvector ui on the
graph defined by the Laplacian L.

Figure 3 shows the Fourier modes of a HEALPix
graph, created using the graph construction described
above. The graph Fourier modes resemble the spheri-
cal harmonics. That is a strong hint that the graph is
able to capture the spherical properties of the HEALPix
sampling. This topic is further discussed in Appendix
A.

2.4. Convolution on graphs

As there is no notion of translation on a graph, we
cannot convolve two graph signals in a strict sense. We
can, however, convolve a signal with a kernel defined
in the spectral domain. More precisely, we can filter a
graph signal by a kernel. Given the convolution kernel
h : R+ → R, a signal f ∈ RNpix on the graph is filtered
as

h(L) f = Uh(Λ)Uᵀ f , (1)

where h(Λ) is a diagonal matrix where h(Λ)ii = h(Λii).

Mode 0: =0, |m|=0 Mode 1: =1, |m|=1 Mode 2: =1, |m|=1 Mode 3: =1, |m|=0

Mode 4: =2, |m|=2 Mode 5: =2, |m|=1 Mode 6: =2, |m|=1 Mode 7: =2, |m|=0

Mode 8: =2, |m|=2 Mode 9: =3, |m|=2 Mode 10: =3, |m|=0 Mode 11: =3, |m|=3

Mode 12: =3, |m|=3 Mode 13: =3, |m|=2 Mode 14: =3, |m|=1 Mode 15: =3, |m|=1

Figure 3: The first 16 eigenvectors of the graph Laplacian, an equiva-
lent of Fourier modes, of a graph constructed from the HEALPix sam-
pling of the sphere (Nside = 16). Eigenvectors 1–3 could be associated
with spherical harmonics of degree ` = 1 and order |m| = (0, 1), eigen-
vectors 4–8 with degree ` = 2 and order |m| = (0, 1, 2), and eigenvec-
tors 9–15 with degree ` = 3 and order |m| = (0, 1, 2, 3). Nevertheless,
graph eigenvectors are only approximating spherical harmonics.

Contrary to classical signal processing on Euclidean
domains, the kernel h has no single representation in the
vertex domain and cannot be translated on the graph. It
can however be localized on any vertex vi by the con-
volution with a Kronecker delta6 δi ∈ RNpix . The local-
ization operator Ti reads Tih = h(L)δi = (h(L))i, the ith
column of h(L). This localization of the kernel h can be
useful to visualize kernels, as shown in an example of
heat diffusion presented in Appendix B. If the graph is
not regular, i.e., all vertices do not have the same num-
ber of neighbors, and all distances are not equal, the
effect of the kernel will slightly differ from one vertex
to another. While there is no perfect sampling of the
sphere, these differences are negligible as the structure
of the whole graph is very regular. However, when con-
sidering only parts of the sphere, one can observe im-
portant border effects (see Appendix C).

Finally, the graph convolution can be interpreted in
the vertex domain as a scalar product with localizations
Tih of the kernel h. Indeed, the result of the convolution
of the signal f with the kernel h is

(h(L) f)i = 〈Tih(L), f 〉 = 〈h(L)δi, f 〉. (2)

To make the parallel with the classical 1D convolution,
let f , g ∈ Z → R be two 1D discrete signals. Their
convolution can be written in the same form as (2):

(f ∗ g)[i] =

∞∑
j=−∞

f [j]g[i − j] = 〈Tig, f 〉,

6A Kronecker delta is the signal δi ∈ RNpix that is zero everywhere
except on vertex vi where it takes the value one.

5

105 106 107

Number of pixels

10 3

10 2

10 1

100

101

102

103

104

Pr
oc

es
sin

g
tim

e
[s

]

Nside
64

Nside
128

Nside
256

Nside
512

Nside
1024

Nside
2048

Sph. harm., max = 3Nside

Sph. harm., max = 2Nside

Graph, poly. order K=15
Graph, poly. order K=5
Partial graph 1/12, K=15
Partial graph 1/192, K=15

Figure 4: Comparison of filtering speed for Gaussian smoothing
of maps of various sizes. The fast spherical harmonic transform
(SHT) is implemented by the healpy Python package (via the
healpy.sphtfunc.smoothing function). The graph filtering is de-
fined by (4) and implemented with the numpy and scipy Python pack-
ages. Both are executed on a single core. The theoretical cost of filter-
ing on the graph is O(KNpix) and O(`3

max) = O(N3/2
pix) for the spherical

harmonics, where `max is the largest angular frequency. The timings
for the partial graphs correspond to a convolution on two fractions
(1/12 and 1/192) of the sphere, and illustrates the O(Npix) scaling of
graph convolutions.

where Tig[j] = g[i − j] is, up to a flip (i.e., g[i − j] in-
stead of g[i+ j]), a translation operator. Similarly as (2),
the convolution of the signal f by a kernel g is the scalar
product of f with translated versions Tig of the kernel
g. Additionally, it turns out that the localization opera-
tor Tih is a generalization of the translation operator on
graphs. In the particular case where the Laplacian ma-
trix L is circulant, Tih is a translated version of T jh for
all i, j and both convolutions are equivalent. We refer
the reader to [37, Sec 2.2] for a detailed discussion of
the connection between translation Ti and localization
Ti.

To shed some light on the meaning of the convolution
on a graph, we show in Appendix B that the diffusion of
heat on a graph can be expressed as the convolution of
an initial condition f with a heat kernel h.

2.5. Efficient convolutions

While (1) is a well justified definition of the convo-
lution, it is computationally cumbersome. As no ef-
ficient and general fast Fourier transform (FFT) exists
for graphs [38], the execution of the Fourier transform
by multiplication of the signal f by the dense matrix U
costs O(N2

pix) operations. In a NN, this operation has to
be performed for each forward and backward pass. As
current training procedures require processing of many
samples, that would be very slow. Moreover, the eigen-
decomposition of the Laplacian L is needed to obtain

the Fourier basis U in the first place. That has a unique
cost of O(N3

pix) operations.
Fortunately, both of these computational issues are

overcome by defining the convolution kernel h as a
polynomial hθ(λ) =

∑K
k=0 θkλ

k of degree K parametrised
by K + 1 coefficients θ. The filtering operation (1) be-
comes

hθ(L) f = U
 K∑

k=0

θkΛ
k

 Uᵀ f =

K∑
k=0

θk Lk f , (3)

where Lk captures k-neighborhoods. The entry (Lk)i j

is the sum of all weighted paths of length k between
vertices vi and v j, where the weight of a path is the mul-
tiplication of all the edge weights on the path. Hence,
it is non-zero if and only if vertices vi and v j are con-
nected by at least one path of length k.7 Filtering with
a polynomial convolution kernel can thus be interpreted
in the pixel (vertex) domain as a weighted linear com-
bination of neighboring pixel values. In the classical
setting, convolutions are also weighted local sums. The
weights are however given by the filter coefficients only,
and there is one coefficient per pixel in the patch. In the
graph setting, the weights are determined by the filter
coefficients θ and the Laplacian L, and there is one co-
efficient per neighborhood, not vertex. That defines ra-
dial filters, values of which depend only on the distance
to the center, and not on the direction. While it may
seem odd to restrict filters to be 1D while the sphere
is 2D, radial filters are direction-less and result in rota-
tion equivariant convolutions. We note that restricting
the graph convolutional kernel to a polynomial is simi-
lar to restricting the classical Euclidean convolution to
a fixed-size patch. Similarly, each column of the matrix∑K

k=0 θk Lk defines an irregular patch of radius K. Hence,
filters designed as polynomials of the Laplacian have lo-
cal support in the vertex domain.

Following [26], we define our filters as Chebyshev
polynomials. The filtering operation (1) becomes

hθ
(
L̃
)

f = U
 K∑

k=0

θkTk

(
Λ̃
) Uᵀ f =

K∑
k=0

θkTk

(
L̃
)

f , (4)

where

L̃ =
2

λmax
L − I = −

2
λmax

D−1/2W D−1/2

is the rescaled Laplacian with eigenvalues Λ̃ in [−1, 1].
Tk(·) is the Chebyshev polynomial of degree k defined

7The length of a path between two vertices defines a distance on
the graph.

6

by the recursive relation Tk(L̃) = 2L̃Tk−1(L̃) − Tk−2(L̃),
T1(L̃) = L̃, T0(L̃) = I. While definitions (3) and (4)
both allow the representation of the same filters, we
found in our experiments that optimizing θ in (4) is
slightly more stable than θ in (3). We believe that this is
due to (i) their almost orthogonality in the spectral and
spatial domains, and (ii) their uniformity.8 Finally, note
that while the graph convolution (1) is motivated in the
spectral domain, definitions (3) and (4) are implementa-
tions in the vertex domain.

Exploiting the recursive formulation of Chebyshev
polynomials, evaluating (4) requires O(K) multiplica-
tions of the vector f with the sparse matrix L̃. The
cost of one such multiplication is O(|E| + |V|). By
construction of our graph, |E| < 8Npix and the over-
all computational cost of the convolution reduces to
O(Npix) operations and as such is much more efficient
than filtering with spherical harmonics, even though
HEALPix was designed as an iso-latitude sampling that
has a fast spherical transform. This is especially true for
smooth kernels which require a low polynomial degree
K. Figure 4 compares the speed of low-pass filtering
for Gaussian smoothing using the spherical harmonics
and the graph-based method presented here. On a sin-
gle core, a naive implementation of our method is ten to
twenty times faster for Nside = 2048, with K = 20 and
K = 5, respectively, than using the spherical harmonic
transform at `max = 3Nside implemented by the highly
optimized libsharp [39] library used by HEALPix.
The further important speed-up of graph convolutions
on fractions of the sphere is a direct reflection of the
O(Npix) complexity. On graphs, you only pay for the
pixels that you use. Note that the two might however
scale differently, given that libsharp can be distributed
on CPUs through MPI while our method can be dis-
tributed on GPUs by TensorFlow.

2.6. Coarsening and Pooling

Coarsening can be naturally designed for hierarchical
pixelisation schemes, where each subdivision divides a
cell in an equal number of child sub-cells. To coarsen,
the sub-cells are merged to summarise the data sup-
ported on them. Merging cells lead to a coarser graph.
Coarsening defines C(i), the set of children of vertex vi.
For the HEALPix subdivision scheme, the number of
children is constant, i.e., |C(i)| = 4p ∀i, for some p.

8The amplitude of the Chebyshev polynomials Tk(x) is mostly
constant over the domain [−1, 1], independently of the order k. On
the contrary, the amplitude of the monomials xk is very different for
|x| ≈ 0 and |x| ≈ 1.

Figure 5: Two levels of coarsening and pooling: groups of 4 cells are
merged into one, then the data on them is summarized in one. The
coarsest cell covers 1/12 of the sphere.

Pooling refers to the operation that summarizes the
data supported on the merged sub-cells in one parent
cell. Given a map x ∈ RNpix , pooling defines y ∈ RN′pix

such that

yi = f
({

x j : j ∈ C(i)
})
, ∀i ∈ [N′pix], (5)

where f is a function which operates on sets (possibly
of varying sizes) and Npix/N′pix is the down-sampling
factor, which for HEALPix is

|C(i)| = Npix/Npix
′ = (Nside/N′side)2 = 4p,

where p = log2(Nside/N′side). That operation is often
taken to be the maximum value, but it can be any permu-
tation invariant operation, such as a sum or an average.
Figure 5 illustrates the process.

2.7. Layers

Neural networks are constructed as stacks of layers
which sequentially transform the data from its raw rep-
resentation to some predictions. The general Deep-
Sphere architecture, pictured in Figure 1, is composed
of many layers. The convolutional part, the head of the
NN, is composed of graph convolutional layers (GC),
pooling layers (P), and batch normalization layers (BN).
The tail is composed of multiple fully connected layers
(FC) followed by an optional softmax layer (S M) if the
network is used for discrete classification. A non-linear
function σ(·) is applied after every linear GC and FC
layer, except for the last FC layer. That operation is
point-wise, i.e., yi j = σ(xi j) and yi = σ(xi) for matrices
X,Y and vectors x, y. The rectified linear unit (ReLU)
σ(·) = max(·, 0) is a common choice, and is the one we
adopted in this contribution.

Given a matrix X = [x1, . . . , xFin] ∈ RNpix×Fin , a
GC layer computes Y = GC(X) = [y1, . . . , yFout] ∈
RNpix×Fout , where Npix is the number of pixels (and ver-
tices), Fin is the number of input features, and Fout is
the number of output features. Using the efficient graph

7

convolution from (4), each output feature map is com-
puted as

yi =

Fin∑
j=1

hθi j (L̃)x j + bi ∈ RNpix , ∀i ∈ [Fout].

As such, a GC layer is composed of Fin × Fout filters,
each parameterized by K numbers (see Section 2.5). A
bias term b ∈ RFout is jointly optimized.

Given a matrix X ∈ RNpix×F , a pooling layer computes
Y = P(X) ∈ RN′pix×F by reducing its spatial resolution
(N′pix < Npix) according to (5). The batch normalization
layer [33] computes Y = BN(X) such as

yi = γi
xi − E(xi)
√

Var(xi) + ε
+ βi, ∀i ∈ [F],

where γ j and β j are parameters to be learned and ε is
a constant added for numerical stability. The empirical
expectation E(xi) ∈ R and variance Var(xi) ∈ R are
taken across training examples and pixels.

The layer FC : RFin → RFout is defined as

y = FC(x) = Wx + b, (6)

where W ∈ RFout×Fin and b ∈ RFout are the parameters to
be learned. Note that the output Y ∈ RNpix×Fout of the last
GC is vectorized as x = vec(X) ∈ RFin before being fed
to the first FC, where Fin = Npix × Fout.

The softmax layer is the last layer in a NN engineered
for classification. Given the output x ∈ RNclasses of the
last FC, called the logits in the deep learning literature,
the softmax layer outputs y = S M(x) such that

yi =
exp(xi)∑Nclasses

j=1 exp(x j)
∈ [0, 1], ∀i ∈ [Nclasses],

where Nclasses is the number of classes to discriminate.
Thanks to the softmax, the output y ∈ RNclasses of a NN is
a discretised conditional distribution for the class given
the data and trained parameters. That is, yi is the con-
fidence of the network that the input sample belongs to
class i. This last layer is actually normalizing x into y
such that ‖y‖1 =

∑
i yi = 1.

2.8. Network architectures

Given a map X ∈ RNpix×Fin , a neural network com-
putes NNθ(X), where NN is a composition of the above
layers and θ is the set of all trainable parameters. The
number of input features Fin depends on the data. For
the CMB radiation temperature, Fin = 1. For obser-
vations in radio frequencies, Fin would be equal to the

Classification Regression
Global NNθ(X) ∈ RNclasses NNθ(X) ∈ RFout

Dense NNθ(X) ∈ RNpix×Nclasses NNθ(X) ∈ RNpix×Fout

Table 1: The output’s size of the neural network NNθ(X) depends on
the task to be solved. Npix is the number of pixels in a HEALPix
map, Nclasses is the number of classes in a classification task, and Fout
is the number of variables to be predicted in a regression task. The
output size of a global task does not depend on the input size, whereas
a dense task asks for one prediction per pixel. A classification task
asks for discrete (or probabilistic) predictions, whereas a regression
task asks for continuous variables.

number of surveyed frequencies. Fin might also be the
number of slices in the radial direction.

DeepSphere can perform dense or global predictions,
for regression or classification. A typical global classifi-
cation task is to classify maps into cosmological model
classes [9]. A typical global regression task is to in-
fer the parameters of a cosmological model from maps
[11, 23]. Some dense regression tasks are denoising,
interpolation of missing values, or inpainting parts of a
map [40]. Segmentation and feature detection [41] are
examples of dense classification tasks. The size of the
output of the NN depends on the task. See Table 1.

Fully convolutional networks (FCNs) have been in-
troduced by [42] and are mostly used for the semantic
segmentation of images, a dense classification task. An
example FCN for dense regression is

Y = NNθ(X) = (GC ◦ σ ◦ BN ◦GC)(X) ∈ RNpix×Fout ,

where ◦ denotes composition, i.e., (f ◦ g)(·) = f (g(·)).
If P layers are used, they have to be inverted via up-
sampling in an encoder-decoder architecture.

The set of input pixels which influence the value of
an output pixel forms a receptive field. That field is
isotropic and local, i.e., it forms a disk centered around
the output pixel. The field’s radius is influenced by
the polynomial order K of GC layers (setting how far
the convolution operation looks around), and the down-
sampling factor of P layers, if any. This radius should be
large enough to capture statistics of interest. For exam-
ple, a partial sky observation can provide only limited
information of cosmological relevance. On the other
hand, looking at the whole sky is often superfluous and
waste computations, as most interactions are local. A
data and task dependent trade-off is to be found. Note
here that while global predictions use, by definition, the
whole sky, dense predictions are not necessarily local.

By treating each output pixel independently and in
parallel, this architecture is a principled way to perform
rotation equivariant operations. Rotation equivariance

8

means that the rotation operation commutes with the
NN, i.e., a rotation of the input implies the same rotation
of the output.9

Global tasks can be solved by averaging dense pre-
dictions [43, 44]. Global averaging is computed by the
layer AV : RNpix×F → RF . Doing so assumes the data
is locally independent, and form different observations
of an unknown process. Averaging over independent
observations is a common way to reduce variance. An
example FCN for global regression is

NN = AV ◦GC ◦ σ ◦GC ◦ P ◦ σ ◦ BN ◦GC.

Here, the FCN predicts parameters for many overlap-
ping parts of the sky in parallel, then average those
predictions to get one set of parameters for the whole
sky. Global predictions are made invariant to rotation on
the SO(3) group by averaging dense equivariant predic-
tions. Rotation invariance means that rotating the input
does not impact the prediction.

By replacing the average by a FC layer, one gets the
standard convolutional neural network (CNN), which is
a generalization of the FCN. Indeed, the AV layer is
a FC layer where all the entries of W in (6) are equal
to 1/Npix and b = 0. By dropping rotation invariance,
CNNs learn where to put attention on the domain. That
is useful when pixels are not of the same importance,
with respect to the task. For example, on images, the
subject of interest is most often around the center of the
picture. Hence, those pixels are more predictive than the
ones in the periphery when considering image classifi-
cation. On the sphere, location is important when ana-
lyzing weather data on the Earth for example, as oceans
and mountains play different roles. An example of such
an architecture is

NN = FC ◦ σ ◦ F ◦ P ◦ σ ◦ BN ◦GC.

There are in general two ways to deal with symme-
tries one wants to be invariant to: (i) build them into
the architecture, or (ii) augment the dataset such that a
(more general) model learns them. With respect to rota-
tion invariance, the FCN architecture is of the first kind,
while the CNN is of the second kind. For tasks that are
rotation invariant, FCNs hence need less training data
as the rotation symmetry is backed in the architecture
and need not be learned. This can be seen as intrinsic
data augmentation, as a CNN would need to see many

9Small errors will however appear as GC layers are not exactly
equivariant due to the small discrepancy between the graph Fourier
modes and the spherical harmonics. See Appendix A.

rotated versions of the same data to learn the invariance.
Moreover, FCNs can accommodate maps with a vary-
ing number of pixels. Such global summarization as the
AV layer is commonly used along graph convolutions to
classify graphs of varying sizes (as it is invariant to ver-
tex permutation) [45, 46]. As such, CNNs should only
be used if rotation invariance is undesired.

All the above architectures can be used for classifi-
cation (instead of regression) by appending a S M layer.
An example FCN for global classification is therefore

NN = S M ◦ AV ◦GC ◦ σ ◦GC ◦ P ◦ σ ◦ BN ◦GC.

Similarly, we emphasize that the use of FC and AV lay-
ers is the sole difference between a NN engineered for
global or dense prediction.

2.9. Training
The cost (or loss) function C(Y, Ȳ) = C(NNθ(X), Ȳ)

measures how good the prediction Y is for sample X,
given the ground truth Ȳ. For a classification task, the
cost is usually taken to be the cross-entropy

C(Y, Ȳ) = −

Npix∑
i=1

Nclasses∑
j=1

ȳi j log(yi j),

where Ȳ ∈ RNpix×Nclasses is the ground truth label indica-
tor, i.e., ȳi j = 1 if pixel i of sample X belongs to class
j and is zero otherwise. For global prediction, we have
Npix = 1. For a regression task, a common choice is the
mean squared error (MSE)

C(Y, Ȳ) =
‖Y − Ȳ‖22
NpixFout

=
1

NpixFout

Npix∑
i=1

Fout∑
j=1

(yi j − ȳi j)2,

where Ȳ is the desired output. Again, take Npix = 1 for
global regression. We emphasize that the cost function
and the S M layer are the sole differences between a NN
engineered for classification or regression.

The goal of training is to find the parameters θ of the
NN that minimize the risk R(θ) = E

[
C

(
NNθ(X), Ȳ

)]
,

where E is the expectation over the joint distribution
(X, Ȳ). In general, that expectation cannot be computed
as the data distribution is unknown. We can however
minimize an approximation, the empirical risk over the
training set

{(
Xi, Ȳi

)}Nsamples

i=1
:

θ̂ = arg min
θ

Nsamples∑
i=1

C
(
NNθ(Xi), Ȳi

)
.

The optimization is performed by computing an error
gradient w.r.t. all the parameters by back-propagation

9

strategies to include the radial component, using concentric grids, which allows us to conduct
convolutions in spherical volumes.

Our hypothesis is that these concentric spherical convolutions should outperform standard 3D
convolutions in cases where data is naturally parameterized in terms of a radial component. We test
this hypothesis in the context of molecular modelling. We will consider structural environments in a
molecule as being defined from the viewpoint of a single amino acid or nucleotide: how does such an
entity experience its environment in terms of the mass and charge of surrounding atoms? We show
that a standard convolutional neural network architectures can be used to learn various features of
molecular structure, and that our spherical convolutions indeed outperform standard 3D convolutions
for this purpose. We conclude by demonstrating state-of-the art performance in predicting mutation
induced changes in protein stability.

2 Spherical convolutions

Conventional CNNs work on discretized input data on a grid in Rn, such as time series data in R
and image data in R2. At each convolutional layer l a CNN performs discrete convolutions (or a
correlation)

[f ∗ ki](x) =
∑

x′∈Zn

Cl∑
c=1

fc(x
′)kic(x− x′) (1)

of the input feature map f : Zn → RCl and a set of Cl+1 filters ki : Zn → RCl (Cohen and Welling,
2016; Goodfellow et al., 2016). While such convolutions are equivariant to translation on the grid,
they are not equivariant to scaling (Cohen and Welling, 2016). This means that in order to preserve
the translation equivariance in Rn, conventional CNNs rely on the grid being uniformly spaced within
each dimension of Rn. Constructing such a grid is straightforward in Rn. However, for convolutions
on other manifolds such as the 2D sphere, S2 = {v ∈ R3|vvᵀ = 1}, no such planar uniform grid is
available, due to the non-linearity of the space (Mardia and Jupp, 2009). In this section, we briefly
discuss the consequences of using convolutions in the standard non-uniform spherical-polar grid, and
present an alternative grid for which the non-uniformity is expected to be less severe.

2.1 Convolutions of features on S2

A natural approach to a discretization on the sphere is to represent points v on the sphere by their
spherical-polar coordinates (θ, φ) and construct uniformly spaced grid in these coordinates, where
the spherical coordinates are defined by v = (cos θ, sin θ cosφ, sin θ sinφ)ᵀ. Convolutions on such
a grid can be implemented efficiently using standard 2D convolutions when taking care of using
periodic padding at the φ boundaries. The problem with a spherical-polar coordinate grid is that it is
highly non-equidistant when projected onto the sphere: the distance between grid points becomes
increasingly small as we move from the equator to the poles (figure 1, left). This reduces the ability
to share filters between different areas of the sphere.

Figure 1: Two realizations of a grid on the sphere. Left: a grid using equiangular spacing in a
standard spherical-polar coordinate system, and Right: An equiangular cubed-sphere representation,
as described in Ronchi et al. (1996).

2

strategies to include the radial component, using concentric grids, which allows us to conduct
convolutions in spherical volumes.

Our hypothesis is that these concentric spherical convolutions should outperform standard 3D
convolutions in cases where data is naturally parameterized in terms of a radial component. We test
this hypothesis in the context of molecular modelling. We will consider structural environments in a
molecule as being defined from the viewpoint of a single amino acid or nucleotide: how does such an
entity experience its environment in terms of the mass and charge of surrounding atoms? We show
that a standard convolutional neural network architectures can be used to learn various features of
molecular structure, and that our spherical convolutions indeed outperform standard 3D convolutions
for this purpose. We conclude by demonstrating state-of-the art performance in predicting mutation
induced changes in protein stability.

2 Spherical convolutions

Conventional CNNs work on discretized input data on a grid in Rn, such as time series data in R
and image data in R2. At each convolutional layer l a CNN performs discrete convolutions (or a
correlation)

[f ∗ ki](x) =
∑

x′∈Zn

Cl∑
c=1

fc(x
′)kic(x− x′) (1)

of the input feature map f : Zn → RCl and a set of Cl+1 filters ki : Zn → RCl (Cohen and Welling,
2016; Goodfellow et al., 2016). While such convolutions are equivariant to translation on the grid,
they are not equivariant to scaling (Cohen and Welling, 2016). This means that in order to preserve
the translation equivariance in Rn, conventional CNNs rely on the grid being uniformly spaced within
each dimension of Rn. Constructing such a grid is straightforward in Rn. However, for convolutions
on other manifolds such as the 2D sphere, S2 = {v ∈ R3|vvᵀ = 1}, no such planar uniform grid is
available, due to the non-linearity of the space (Mardia and Jupp, 2009). In this section, we briefly
discuss the consequences of using convolutions in the standard non-uniform spherical-polar grid, and
present an alternative grid for which the non-uniformity is expected to be less severe.

2.1 Convolutions of features on S2

A natural approach to a discretization on the sphere is to represent points v on the sphere by their
spherical-polar coordinates (θ, φ) and construct uniformly spaced grid in these coordinates, where
the spherical coordinates are defined by v = (cos θ, sin θ cosφ, sin θ sinφ)ᵀ. Convolutions on such
a grid can be implemented efficiently using standard 2D convolutions when taking care of using
periodic padding at the φ boundaries. The problem with a spherical-polar coordinate grid is that it is
highly non-equidistant when projected onto the sphere: the distance between grid points becomes
increasingly small as we move from the equator to the poles (figure 1, left). This reduces the ability
to share filters between different areas of the sphere.

Figure 1: Two realizations of a grid on the sphere. Left: a grid using equiangular spacing in a
standard spherical-polar coordinate system, and Right: An equiangular cubed-sphere representation,
as described in Ronchi et al. (1996).

2

Figure 6: Some pixelizations of the sphere. Left: the equirectangular
grid, using equiangular spacing in a standard spherical-polar coordi-
nate system. Middle: an equiangular cubed-sphere grid, as described
in [47]. Right: graph built from a HEALPix pixelization of half the
sphere (Nside = 4). By construction, each vertex has eight neighbors,
except the highlighted ones which have only seven.5 Left and middle
figures are taken from [20].

and updating them with a form of stochastic gradient
descent (SGD):

θ ← θ −
η

|B|

∑
i∈B

∂C
(
NNθ(Xi), Ȳi

)
∂θ

,

where η is the learning rate, andB is the set of indices in
a mini-batch. Batches are used instead of single samples
to gain speed by exploiting the parallelism afforded by
modern computing platforms.

3. Related work

3.1. 2D convolutional neural networks

A first approach, explored by [20] for molecular mod-
eling and [21, 22] for omnidirectional imaging, is to
use a 2D CNN on a discretisation of the sphere that
is a grid, such as the equirectangular projection (Fig-
ure 6, left panel), or a set of grids, such as the cubed-
sphere defined by [47] (Figure 6, middle panel). As
this formulation uses the standard 2D convolution, all
the optimizations developed for images can be applied,
which makes it computationally efficient. This approach
is applicable to the many pixelizations that are based
on a regular subdivision of a base polyhedron, such as
HEALPix. Each base polyhedron then forms a grid.
Care has to be taken to handle boundary conditions: for
example by padding a grid with the content of the op-
posite side (equirectangular) or of the neighboring grids
(cubed-sphere, HEALPix). That incurs some computa-
tional losses. For samplings that are not equal area, such
as the equirectangular projection, the convolution oper-
ation should be adjusted to take the induced distortion
into account [21, 22].

Another approach to leverage 2D CNNs is to project
spherical data onto many tangent planes, which are flat
2D surfaces. This approach has been extensively used

for cosmological maps [9, 11, 12, 23] and omnidirec-
tional imaging [48, 49]. This idea has been generalized
to arbitrary 2D manifolds for shape alignment and re-
trieval [50–52].

The main issue with the above two approaches is that
they depend on a (local) coordinate system to define
anisotropic filters, i.e., filters which are direction depen-
dent. Direction is well defined and matters for some ap-
plications, such as the analysis of weather and climate
data on the Earth (north, south, east, west), and om-
nidirectional imaging (up, down). Indeed, rotation in-
variance has been shown to reduce discriminative power
for omnidirectional imaging [22]. Some problems are,
however, intrinsically invariant (or equivariant) to ro-
tation. Examples include the analysis of cosmological
maps, and the modeling of atoms and molecules. In
such cases, directions are arbitrarily defined when set-
ting the origin of the pixelization. Therefore, a convo-
lution operation has to be isotropic to be equivariant to
rotation.

3.2. Spherical neural networks

Rotation equivariance was addressed by leveraging
the convolution associated to the 3D rotation group
SO(3), with applications to atomization energy regres-
sion and 3D model classification, alignment and re-
trieval [24, 25]. The resulting convolution is performed
by (i) a spherical harmonic transform (SHT), i.e., a pro-
jection on the spherical harmonics, (ii) a multiplication
in the spectral domain, and (iii) an inverse SHT. Note
the similarity with the naive graph convolution defined
in (1). Likewise, the computational cost of a convolu-
tion is dominated by the two SHTs, and a naive imple-
mentation of the SHT costs O(N2

pix) operations. Accel-
erated schemes however exist for some sampling sets
[see 39, 53, 54, for examples]. The convolutions remain
nevertheless expensive, limiting the practical use of this
approach. For example with HEALPix, which was de-
signed to have a fast SHT by being iso-latitude, the com-
putational cost of the SHT is O(N3/2

pix) = O(N3
side) =

O(`3
max), where `max is the largest angular frequency

[27, 39].10 While the Clebsh-Gordan transform can be

10All pixels are placed on Nring = 4Nside − 1 = O
(√

Npix
)

rings

of constant latitude. Each ring has O
(√

Npix
)

pixels. Thanks to this
iso-latitude property, the SHT is computed using recurrence relations
for Legendre polynomials on co-latitude and fast Fourier transforms
(FFTs) on longitude. The computational cost is thus

√
Npix FFTs for

a total cost of O
(
Npix log

√
Npix

)
, plus

√
Npix matrix multiplications

of size
√

Npix for a total cost of O
(
N3/2

pix

)
operations.

10

leveraged to avoid SHTs between layers (it does a non-
linear transformation in the spectral domain), the trans-
form itself costs O(N3/2

pix), for no reduction of overall
complexity [55]. This work is another indication that
there might be a Ω(N3/2

pix) computational lower bound
for the proper treatment of rotation equivariance with
the spherical harmonics. In comparison, DeepSphere
scales as O(Npix) (see Section 2.5), at the expense of
not being exactly equivariant (see Appendix A). Being
a mathematically well-defined rotation equivariant net-
work is the main advantage of methods based on spher-
ical harmonics, though the fact that convolution kernels
are learned probably compensates for inexact equivari-
ance. See [56] for a rigorous treatment of convolution
and equivariance in NNs.

While defining the convolution in the spectral domain
avoids all sampling issues, filters so defined are not nat-
urally localized in the original domain. Localization is
desired for the transformation to be stable to local de-
formation [57], and most interactions in the data are
local anyway. A straightforward way to impose local-
ity in the original domain is to impose smoothness in
the spectral domain, by Heisenberg’s uncertainty prin-
ciple.11 A more elegant approach is to define filters that
are provably localized. The filters defined in (3) and (4),
by being polynomials of the Laplacian, are of this kind.

All the presented 2D and spherical CNNs cannot be
easily accelerated when the data lies on a part of the
sphere only. That is an important use case in cosmology
as measurements are often partial, i.e., whole sky maps
are rare. One could still fill the unseen part of the sphere
with zeros, and avoid computing empty integrals. It is,
however, not straightforward to identify empty space,
and computations would still be wasted (for example
on a ring that mostly contains zeros but a few measure-
ments). With graphs, however, computations are only
performed for used pixels. While it results in some dis-
tortions due to border effects (see Figure C.15 and Ap-
pendix C), these can be mitigated by padding with zeros
a small area around the measurements.

3.3. Graph neural networks
The use of a graph to model the discretised sphere

was also considered for omnidirectional imaging [35].
This work is the closest to our method, with three dif-
ferences. First, they parametrize their convolution ker-
nel with (3) instead of (4) (see Section 2.5 for a dis-
cussion and comparison). Second, they did not take

11Heisenberg’s uncertainty principle states that a filter cannot be
arbitrarily concentrated in one domain without being de-concentrated
in the other.

advantage of a hierarchical pixelization of the sphere
and resorted to dynamic pooling [58]. While that oper-
ation has proved its worth to pool sequences of varying
length, such as sentences in language models, it is unde-
sired in our context as it is not local and destroys spatial
coherence. Third, they introduced a statistical layer —
an operation that computes a set of statistics from the
last feature maps — to provide invariance to rotation.
We propose to use the idea of fully convolutional net-
works (FCNs) instead (see Section 2.8). While statistics
have to be hand-chosen to capture relevant information
for the task, the filters in a FCN are trained end-to-end
to capture it.

Many formulations of graph neural networks, re-
viewed by [59] and [60], have been proposed. For this
contribution, we chose the formulation of [26] as its root
on strong graph signal processing theory makes the con-
cept of convolutions and filters explicit [36]. As the con-
volution is motivated by a multiplication in the graph
Fourier spectrum, it is close in spirit, and empirically,
to the formulation based on the spherical harmonics,
which is the ideal rotation equivariant formulation.

Thanks to their versatility, graph neural networks
have been used in a variety of tasks, such as identifying
diseases from brain connectivity networks [61] or pop-
ulation graphs [62], designing drugs using molecular
graphs [63], segmenting 3D point clouds [64], optimiz-
ing shapes to be aerodynamic [65], and many more. By
combining graph convolutional layers and recurrent lay-
ers [66], they can, for example, model structured time
series such as traffic on road networks [67], or recur-
sively complete matrices for recommendation [68]. An-
other trend, parallel to the modeling of structured data,
is the use of graph neural networks for relational rea-
soning [69].

4. Experiments

The performance of DeepSphere is demonstrated on
a discrimination problem: the classification of conver-
gence maps into two cosmological model classes. The
experiment presented here is similar to the one by [9].
These maps are similar to those created with gravita-
tional lensing techniques [28]. The two sets of maps
were created using the standard cosmological model
with two sets of cosmological parameters (see Sec-
tion 4.1 for details). The classification methods were
trained to predict a label from a HEALPix map. Our
Python implementation to reproduce those experiments

11

102 103

: spherical harmonic index
10 7

10 6

10 5

10 4

C
(

+
1)

/(2
)

Power Spectrum Density
noiseless, 3-arcmin smoothing, Nside=1024

class 1, m = 0.31, 8 = 0.82
class 2, m = 0.26, 8 = 0.91

Figure 7: Power spectral densities of the noiseless maps. To pre-
vent the cosmological models from being distinguished by their power
spectra alone, the maps have been smoothed with a Gaussian kernel
of radius 3 arcmins to remove high frequencies (` > 1000).

is openly available online.12 The data is available upon
request.13

While we only demonstrate a classification task here,
other tasks, such as regression or segmentation, are also
possible (see Section 2.8). The regression task will most
likely be the most practical cosmological application, as
described in [11] and [23]. Implementation of full cos-
mological inference typically requires, however, many
more simulations, building the likelihood function, and
several other auxiliary tasks. The classification prob-
lem is much more straightforward to implement and ex-
ecute, and can be used to fairly compare the accuracy
of the algorithm against benchmarks [9]. For these rea-
sons we decided to use the classification problem in this
work, and we expect the relative performance of the
methods to generalise to the regression scenario.

4.1. Data

Convergence maps represent the dimensionless dis-
tribution of over- and under-densities of mass in the uni-
verse, projected on the sky plane. The 3D structures are
projected using a geometric kernel, the value of which
depends on the radial distance. In gravitational lensing,
this kernel is dependent on the radial distances between
the observer, the mass plane, and the plane of source
galaxies [see 70, for a review of gravitational lensing].

We make whole sky N-body simulations for two pa-
rameter sets of the ΛCDM cosmological model: model
1 (Ωm = 0.31, σ8 = 0.82) and model 2 (Ωm =

0.26, σ8 = 0.91), where Ωm is the matter density in
the universe and σ8 is the normalisation of the matter

12https://github.com/SwissDataScienceCenter/
DeepSphere

13https://doi.org/10.5281/zenodo.1303272

power spectrum. Other parameters are set to: Hubble
constant H0 = 70km/s/Mpc, spectral index ns = 0.96,
and Baryon density today Ωb = 0.05. The parameters
Ωm and σ8 were chosen for the maps to have the same
spherical harmonic power spectrum. That means that
it is difficult to distinguish between these cosmological
models. We found that the differences in power spec-
trum is 5% for ` > 1000. To remove this informa-
tion, we additionally smooth the spherical maps with a
Gaussian kernel of radius 3 arcmin. The resulting power
spectral density (PSD), computed using the anafast
function of the HEALPix package, are displayed in Fig-
ure 7. We also subtract the mean of each map and down-
sample them to a resolution of Nside = 1024, which cor-
responds to maps of 12 × 10242 ≈ 12 × 106 pixels. As
shown by the occupied spectrum (Figure 7), a larger res-
olution would waste memory and computation, while a
lower resolution would destroy information.

The simulations are created using the fast lightcone
method UFalcon described in [71]. A brief overview
about the map making procedure used in UFalcon as
well as the simulation parameters are given in Appendix
F. We however use a single simulation box, as opposed
to two used in that work, as we use source galaxies at a
lower redshift of z = 0.8, instead of z = 1.5. L-PICOLA
[72] is used for fast and approximate N-body simula-
tions. We generate 30 simulations for each of the two
classes. Out of the 60 simulations, 20 are kept as the
test set, and 20% of the remaining training data is used
as a validation set, to monitor the training process and
select the hyper-parameters. Figure 8 shows the whole
sky simulations and a zoom region for both models. Ini-
tial conditions for these simulations are the same, so the
differences in structures can only be attributed to differ-
ent cosmological parameters used to evolve the particle
distribution.

4.2. Problem formulation

As the distribution of matter in the universe is ho-
mogeneous and isotropic, no pixel is more informative
than any other.14 As such, we can control the difficulty
of the classification problem by limiting the number of
pixels available to the algorithms, i.e., extracting par-
tial maps from whole sky maps. Using the properties
of HEALPix, we split maps into 12 × o2 independent
samples of (Npix/o)2 pixels (for o = 1, 2, 4, . . .). The
resulting partial maps are large enough to suffer from
the effects of the spherical geometry, and cover 8.3%

14Contrast that with images, where the subject of interest is most
often around the center of the picture.

12

https://github.com/SwissDataScienceCenter/DeepSphere
https://github.com/SwissDataScienceCenter/DeepSphere
https://doi.org/10.5281/zenodo.1303272

Figure 8: Example maps from two classes to be discriminated. Left: model 1 with Ωm = 0.31 and σ8 = 0.82. Right: model 2 with Ωm = 0.26 and
σ8 = 0.91. The initial conditions for both simulations are the same, so differences only arise due to different cosmological parameters.

(≈ 1 × 106 pixels), 2.1% (≈ 260 × 103 pixels), and
0.5% (≈ 65 × 103 pixels) of the sphere for o = 1, 2, 4,
respectively. Corresponding areas can be seen in Fig-
ure 5: the surface of pixels in the left, middle, and right
spheres correspond to samples at order o = 4, 2, 1, re-
spectively. We report results for o = 1, 2, 4 only, as full
sphere classification is easy at such resolution (perfect
classification accuracy is already obtained at o = 1, see
Figure 9). The published code nonetheless includes an
example demoing classification on full spheres of lower
resolution (Nside = 64).

To make the discrimination harder and the problem
more realistic, centered Gaussian noise is added to the
simulated maps. The standard deviation of the noise
varies from zero (i.e., no noise) to 2× the standard de-
viation of pixel’s values in the noiseless maps. While
the noise model of real maps often has a slightly differ-
ent distribution, Gaussian noise should be a sufficient
model to demonstrate the performance of our method.
To avoid over-fitting, random noise is generated during
training, so that no two samples are exactly the same
(i.e., two samples might be from the same simulation,
but the added noise will be different). That is a data
augmentation scheme, as it creates more training exam-
ples than we have simulations.

4.3. Baselines

DeepSphere is first compared against two simple yet
powerful benchmarks. The two baselines are based on
features that are (i) the power spectral densities (PSDs)
of maps, and (ii) the histogram of pixels in the maps
[73]. After normalization, those features are used by a
linear support vector machine (SVM) trained for classi-
fication. A linear kernel is used as other kernels did not
provide better results, while having significantly worse
scaling properties. For fairness, the training set was

augmented in a similar way as for DeepSphere: we cre-
ated samples by adding new random realizations of the
noise. We stopped adding new samples to the train-
ing data once the validation error converged. This pro-
cess is detailed in Appendix E. As for DeepSphere, the
SVM regularization hyper-parameter was tuned based
on the performance over the validation set. The classifi-
cation accuracy of DeepSphere and both baselines was
checked as a function of the used area (the order o), and
the relative level of additive noise.

DeepSphere is further compared to a classical CNN
for 2D Euclidean grids, later referred to as 2D Con-
vNet. To be fed into the 2D ConvNet, samples have
to be transformed into flat images. As described in Ap-
pendix D, we use the property that HEALPix is defined
as the subdivision of 12 square surfaces to efficiently
project the spherical maps. This property has been inde-
pendently exploited (while this paper was under review)
to define another spherical CNN [74]. In our exper-
iments, we used the same architecture as DeepSphere
(described in Section 4.4), with convolution kernels of
size 5 × 5 and an `2 weight decay with a weight of 3
as regularization. The number of filters was reduced
in order to match the number of trainable parameters
between DeepSphere and the 2D ConvNet. (A larger
architecture resulted in unstable training for a marginal
performance gain.)

Ideally, we would compare DeepSphere to alterna-
tive spherical CNNs like [24] and [25]. There are how-
ever two issues with that comparison. First, these CNNs
were developed for the equirectangular sampling. An
option is to modify the available implementations to use
HEALPix, which is a major undertaking due to their
complexity. Another option is to transform the cosmo-
logical maps to the equirectangular sampling, which is
of disputable usefulness as the field is unlikely to use
that sampling. Second, those methods, based on SHTs,

13

only work on the full sphere (at least in their current
state). As shown in Figure 4, using the full sphere at a
resolution of Nside = 1024 would result in a slow-down
of multiple orders of magnitude compared to using a
partial graph. The authors of [75] could not use [24]
for CMB analysis because of that.15 For those reasons
and because we think that a proper comparison is better
carried out on diverse datasets and tasks, we leave it as
future work.

4.4. Network architecture and hyper-parameters
As discussed in Section 2.8, the choice of a network

architecture depends on the data and task at hand. For
our problem, where we assume that each pixel carries
the same quantity of information about the cosmologi-
cal model, a rotation invariant FCN architecture should
be best. The selected network is defined as

FCN = S M ◦ AV ◦GC2︸ ︷︷ ︸
classifier

◦ L5 ◦ L4 ◦ L3 ◦ L2 ◦ L1︸ ︷︷ ︸
feature extractor

,

with
L1 = P4 ◦ σ ◦ BN ◦GC16,
L2 = P4 ◦ σ ◦ BN ◦GC32,
L3, L4, L5 = P4 ◦ σ ◦ BN ◦GC64,

where GCF indicates a graph convolutional layer with
F output feature maps, P4 is a pooling layer that divides
the number of pixels by 4, σ is a ReLU, and the Cheby-
shev polynomials in (4) are of degree K = 5. The layers
L1 to L5 build the statistical evidence to classify each
pixel of a down-sampled sphere. The last GC layer acts
as a linear classifier and outputs two predictions. The
AV layer averages these predictions and the S M layer
normalizes them.

For comparison, we tried the more conventional CNN
architecture, where the classification is performed by a
fully connected layer from the last feature maps instead
of the average of local classifications. This architecture
is not invariant to rotation. The selected network is de-
fined as

CNN = S M ◦ FC2︸ ︷︷ ︸
classifier

◦ L5 ◦ L4 ◦ L3 ◦ L2 ◦ L1︸ ︷︷ ︸
feature extractor

,

where FC2 denotes a fully connected layer with two
outputs. Architectures were selected over their perfor-
mance on the validation set.

The Adam optimizer [76] with β1 = 0.9, β2 = 0.999
was used with an initial learning rate of 2 × 10−4 that is

15Note that reported results in [24] and [25] are for maps of at most
(2 × 128)2 = 65, 536 pixels. That is the size of our smallest partial
map, while the largest is of approximately one million pixels.

exponentially decreased by a multiplication with 0.999
at each step. All models were trained for 80 epochs,
which corresponds to 1920 steps. The batch size is set
to 16 × o2 to keep the amount of supervision used to
estimate the gradient identical, irrespective of the cho-
sen order o (the learning rate would otherwise need to
be adapted). By this choice, DeepSphere is trained with
the same amount of information, i.e., the number of pix-
els, across all variants of the problem. Training took
approximately 1.5 hour using a single Nvidia GeForce
GTX 1080 Ti and 5 hours with a Tesla K20.

4.5. Results
Figure 9 compares the classification accuracy of

DeepSphere (FCN and CNN variants), and the three
baselines across five noise levels and three sample sizes.
We indeed observe that the problem is made more dif-
ficult as the sample size decreases, and the noise in-
creases. As fewer pixels are available to make a deci-
sion about a sample, the algorithms have access to less
information and thus cannot classify as well. As the
noise increases, the useful information gets diluted in
irrelevant data, i.e., the signal-to-noise ratio (SNR) di-
minishes.

As the cosmological parameters were chosen for the
maps to have similar PSDs (see Figure 7), it is reas-
suring to observe that an SVM with those as features
has difficulties discriminating the models. Other statis-
tics are therefore needed to solve the problem. Using
histograms as features gives a significant improvement.
Performance is very good for larger maps and deterio-
rates for the smaller cases with increased noise level,
reaching 80% at the highest noise level for o = 4.
The histogram features contain information about the
distribution of pixels, which clearly varies for the two
classes. They do not, however, include any spatial in-
formation. DeepSphere (both the FCN and CNN vari-
ants) shows superior performance over all configura-
tions. The gap widens as the problem becomes more
difficult. This is likely due to DeepSphere learning fea-
tures that are adapted to the problem instead of rely-
ing on hand-designed features. The accuracy of Deep-
Sphere is > 97% for orders o = 1 and o = 2, for all
noise levels, and starts to deteriorate for o = 4, reaching
90% for the highest noise level.

It may seem unfair to compare DeepSphere, who has
access to raw pixels, with SVMs who only see limited
features (histograms and PSDs). We however trained an
SVM on the raw pixels and were unable to obtain over
60% accuracy in any of the three noiseless cases.

The 2D ConvNet fairs in-between the SVMs and
DeepSphere. Its relatively low performance probably

14

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Relative noise level

80

85

90

95

100

Ac
cu

ra
cy

 in
 %

Order o = 1: 1,048,576 pixels per samples (1/12 sphere)

DeepSphere (FCN variant)
DeepSphere (CNN variant)
2D ConvNet (FCN variant)
2D ConvNet (CNN variant)
linear SVM on histogram
linear SVM on PSD

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Relative noise level

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 in
 %

Order o = 2: 262,144 pixels per samples (1/48 sphere)

DeepSphere (FCN variant)
DeepSphere (CNN variant)
2D ConvNet (FCN variant)
2D ConvNet (CNN variant)
linear SVM on histogram
linear SVM on PSD

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Relative noise level

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 in
 %

Order o = 4: 65,536 pixels per samples (1/192 sphere)

DeepSphere (FCN variant)
DeepSphere (CNN variant)
2D ConvNet (FCN variant)
2D ConvNet (CNN variant)
linear SVM on histogram
linear SVM on PSD

Figure 9: Classification accuracy of the fully convolutional variant of DeepSphere (DeepSphere FCN), the standard convolutional variant of
DeepSphere (DeepSphere CNN), the fully convolutional 2D ConvNet (2D ConvNet FCN), the standard 2D ConvNet (2D ConvNet CNN), the
support vector machine (SVM) with the power spectral density (PSD) as features, and the SVM with the histogram as features. The difficulty of
the task depends on the level of noise and the size of a sample (that is, the number of pixels that constitute the sample to classify). Order o = 1
corresponds to samples which area is 1

12 = 8.1% of the sphere, order o = 2 to 1
12×22 = 2.1%, and order o = 4 to 1

12×42 = 0.5%. The standard
deviation of the added Gaussian noise varies from zero to 2× the standard deviation of pixel’s values in the noiseless maps. It is clear from those
results that the noise makes the problem harder, and that having more pixels available to classify a sample makes the problem easier (the classifier
having more evidence to make a decision). The FCN variant of DeepSphere beats the CNN variant by being invariant to rotation. Both variants
largely beat the 2D ConvNet and the two SVM baselines.

come from the following drawbacks. First, it does not
exploit the rotational invariance of the problem. We ob-
served that the learned convolution kernels were not ra-
dial. Second, the 2D projection distorts the geometry,
and the NN has to learn to compensate for it, which
comparatively requires more training data.

As expected, the FCN variants outperform the CNN
variants (both for DeepSphere and the 2D ConvNet).
This may seem counterintuitive as the CNN is a gener-
alization of the FCN and hence should be able to learn
the same function and provide at least equivalently good
results. Nevertheless, as discussed in Section 2.8, the
larger number of parameters incurred by the increased
flexibility requires more training data to learn the rota-
tion symmetry. The superior performance of the FCN
is an empirical validation that these maps are station-
ary with a small-support radial autocorrelation function,
stemming from the fact that the mass distribution is ho-
mogeneous and isotropic. It also implies that this classi-
fication problem is invariant to rotation. Hence, a pixel
can be statistically classified using only its surrounding,
and those local predictions can be averaged to vote for
a global consensus. The CNN variant, however, may be
better for data that does not have this property, as the ar-
chitecture should always be adapted to the data and task
(see Section 2.8).

While testing the FCN and CNN variants of Deep-
Sphere, we made the following empirical observations.
First, training was more stable (in the sense that the
loss decreased more smoothly) when using Chebyshev
polynomials, as in (4), rather than monomials, as in (3).
Nevertheless, we could not observe a significant differ-
ence in accuracy after convergence. Second, using `2

regularization does not help either with performance or
training of the models, mostly because the models are
not over-fitting. Third, we recommend initializing the
Chebyshev coefficients with a centered Gaussian dis-
tribution with standard deviation

√
2/(Fin × (K + 0.5)),

where K is the degree of the Chebyshev polynomials
and Fin the number of input channels. This standard de-
viation has the property of keeping the energy of the
signal more or less constant across layers.16 Finally,
we observe that scaling the Laplacian’s eigenvalues be-
tween [−a, a], where 0 < a ≤ 1, significantly helps in
stabilizing the optimization. We use a = 0.75 in our
experiments.

4.6. Filter visualization
A common visualization to introspect and try to un-

derstand how a CNN function is to look at the learned
filters. Since our construction leads to almost (up to
sampling irregularities) spherical filters, we plot in Fig-
ure 10 both the radial profile and a gnomonic projec-
tion on a plane of a random selection of learned filters
from the last layer of the network. While those par-
ticular filters were obtained from the experiment with
order o = 2 and a relative noise level of 2, all trained
networks presented visually similar patterns. Details of
how the convolution kernels are plotted are described in
Appendix B. While it is usually difficult to interpret the
shape of the filters, especially given the type of data, we
can notice that they often have a “peak”-like structure.
An example of filter interpretation was demonstrated in
[78].

16We derived this rule from the principles presented in [77], the
Chebyshev polynomial equations, and some empirical experiments.

15

20

0

20

40

in
 m

ap
 0

20

0

20

40

in
 m

ap
 1

20

0

20

40

in
 m

ap
 2

20

0

20

40

in
 m

ap
 3

20

0

20

40

in
 m

ap
 4

5 0 5
out map 0

20

0

20

40

in
 m

ap
 5

5 0 5
out map 1

5 0 5
out map 2

5 0 5
out map 3

Figure 10: Random selection of 24 learned filters from the fifth spher-
ical convolutional layer L5. Top: section. Bottom: gnomonic pro-
jection. The structure in the filters resembles peaks, which is not un-
expected, given that the convergence maps largely consist of concen-
trated clumps.

5. Conclusion

We present DeepSphere, a convolutional neural net-
work defined on the sphere with HEALPix sampling,
designed for the analysis of cosmological data. The
main contributions of this paper are (i) to show that
spherical CNNs are a great NN architecture for cosmo-
logical applications, and (ii) that a graph-based spheri-
cal CNN has certain undeniable advantages. The core
of our method is the use of a graph to represent the
discretised sphere. This allows us to leverage the ad-
vantages of the graph convolution. It is both efficient,
with a complexity ofO(Npix), and flexible, which allows
DeepSphere to efficiently work on a partial sphere. The
spherical properties of the domain are well captured: the
graph Fourier modes are close to the spherical harmon-
ics. Filters are restricted to be radial for the convolution
operation to be equivariant to rotation. DeepSphere can
then be made either equivariant or invariant to rotation.
Equivariance is not perfect as small imprecisions due to
the sampling cause the action of a graph filter to slightly
depend on the location. However, we do not expect that
to cause problems for practical applications.

We demonstrate that DeepSphere systematically and
significantly outperforms three benchmark methods on
an example problem of cosmological model discrimina-
tion with weak lensing mass maps, designed similarly
to [9]. The maps were produced from two cosmological
models with varying σ8 and Ωm, chosen to follow the
typical weak lensing degeneracy in these parameters, so
that the power spectra for these models are similar. We
compared the performance of DeepSphere versus that
of a classical 2D CNN and two SVM classifiers (one
trained on the spherical harmonics power spectrum, and
the other on the pixel density histogram). DeepSphere
performs better than the three baselines for all consid-
ered cases. The advantage is small for large, noise-free
maps, and grows up to 10% for smaller, noisier data.

Spherical CNNs are so far mostly used for omnidirec-
tional imaging. Many scientific fields, such as weather
or climate modelling, would however benefit from an
efficient and versatile spherical CNN. With this work,
we hope to demonstrate and help democratize the use of
those tools for spherical data analysis. We publish the
code as a small and easy-to-use python package. The
code was designed so that DeepSphere can easily be
used for typical machine learning tasks, such as clas-
sification and regression, both dense and global.

As future work, it would be interesting to further in-
vestigate the relation between the graph Fourier basis
and the spherical harmonics. The goal would be to find
edge weights such that the graph Laplacian converges

16

(or is equivalent) to the Laplace-Beltrami (up to a cer-
tain bandwidth). Ideally, that should work for any sam-
pling of the sphere. That would enable a truly rotation
equivariant graph convolution and high-precision filter-
ing using the graph rather than the SHT (for speed). Fi-
nally, a comparison of DeepSphere to other spherical
CNN formulations, with different sampling schemes,
would be worthwhile.

The fact that a graph representation of the discretised
sphere enables an efficient convolution relaxes the iso-
latitude constraint on the design of sampling schemes
which aim to enable fast convolutions. In the long term,
graphs might enable researchers to consider sampling
schemes with different trade-offs, or remove the need
for schemes and interpolation altogether and simply
consider the positions at which measures were taken.

Acknowledgements

This work was supported by a grant from the Swiss
Data Science Center (SDCS) under project DLOC:
Deep Learning for Observational Cosmology and grant
number 200021_169130 from the Swiss National Sci-
ence Foundation (SNSF). We thank Jean-François Car-
doso for helpful discussions about the spherical har-
monics. We thank Alexandre Refregier, Adam Amara,
Thomas Hofmann, and Fernando Perez-Cruz for advice
and helpful discussions. We thank Hamsa Padmanab-
han for testing use cases of the code. Finally, we thank
the two anonymous reviewers who provided extensive
feedback that greatly improved the quality of this paper.

Appendix A. Graph Fourier modes and spherical
harmonics

The first 16 eigenvectors [u1, . . . ,u16] of the graph
Laplacian L, forming the lower part of the graph Fourier
basis U, are shown in Figure 3. Let us further ob-
serve the spectral properties of our constructed spher-
ical graph laplacian L. Its eigenvalues, shown in Fig-
ure A.11, are clearly organized in frequency groups
of 2` + 1 orders for each degree `. We remind the
reader that the amplitude of the Laplacian eigenvalue
is proportional to the sum of the variations of its associ-
ated eigenvector. Furthermore, all spherical harmonics
with the same order ` have the same variation. Hence,
the fact that the Laplacian eigenvalues are grouped in
blocks of size 2` + 1 is a hint that the graph eigen-
vectors approximate the spherical harmonics. In or-
der to push the comparison one step further, we show
the correspondence between the subspaces spanned by

1 4 9 16 25 36 49
Eigenvalue

0.00

0.02

0.04

0.06

Va
lu

e

 = 1 = 2
 = 3

 = 4
 = 5

 = 6

Figure A.11: The eigenvalues Λ of the graph Laplacian L = UΛUᵀ,
which corresponds to squared frequencies, are clearly organized in
groups. Each group corresponds to a degree ` of the spherical har-
monics. Each degree has 2` + 1 orders. See also Figure 3.

0 11

0

gr
ap

h
ei

ge
nv

ec
to

rs

Nside = 4

SH degree 0 23

Nside = 8

SH degree 0 47

Nside = 16

SH degree 0

1

Figure A.12: Correspondence between the subspaces spanned by the
graph Fourier modes and the spherical harmonics. First, we com-
pute the power spectral density (PSD) of each graph eigenvector with
the SHT. Second, as there is 2` + 1 spherical harmonics for each de-
gree `, we sum the contributions of the corresponding 2` + 1 graph
eigenvectors. The matrix shows how the subspaces align: the Fourier
modes span the same subspaces as the spherical harmonics in the low
frequencies, and the Fourier modes leak towards adjacent frequency
bands at higher frequencies. While there is a systematic error, the
Fourier modes align at higher frequencies as Nside increases.

the graph Fourier modes and the spherical harmonics in
Figure A.12.

While these indications show that the constructed
graph Fourier basis approximates well the spherical har-
monics, one should not forget that the small irregular-
ities in the sampling (non-constant number of neigh-
boring pixels and varying distance between pixels, see
Figure 6) have an important effect on the graph Fourier
modes. First, we believe that they are responsible for
energy leaking across frequency bands in Figure A.12.
Second, as the resolution is increased with Nside → ∞

and Npix → ∞, we are still unsure if the eigenvectors
would converge towards the spherical harmonics. The
theoretical study of those phenomenons is left as future
work. Third, counter-intuitively, some eigenvectors will
be localized [79], i.e., they will span a small part of the
sphere. Those discrepancies result in a convolution op-
eration that is not exactly equivariant to rotation. Nev-
ertheless, our experiments suggest that these downsides
do not have an important effect on the convolution nor
hinder the performance of the NN.

17

Appendix B. Example: heat diffusion

Let us consider the heat diffusion problem

τL f (t) = −∂t f (t), (B.1)

where f : R+ → RNpix . Given the initial condition f (0),
the solution of (B.1) can be expressed as

f (t) = e−Lτt f (0) = Ue−ΛτtUᵀ f (0) = Kt(L) f (0),

which is, by definition, the convolution of the signal
f (0) with the kernel Kt(λ) = e−τtλ. Since the kernel
Kt is applied to the graph eigenvalues Λ, which can be
interpreted as squared frequencies, it can also be con-
sidered as a generalization of the Gaussian kernel on
the sphere. Figure B.13 shows the effect of the convolu-
tion by diffusing a unit of heat for τ = 1 at various times
t. By comparing the graph convolution with the spher-
ical symmetric Gaussian smoothing, we observe that
both techniques lead to similar results (see Figure B.13).
While the graph convolution remains different from the
spherical convolution, this small experiment shows that,
providing the correct parameters, the graph convolution
can approximate the spherical convolution. Figure B.14
should give more insights about the graph kernel Kt.

t = 5

= 315

t = 20

= 670

t = 50

= 1080

Figure B.13: Comparison of convolution with the graph and the spher-
ical harmonics (Nside = 16). Top: Diffusion of a unit of heat for dif-
ferent times t using the graph. Bottom: spherical symmetric Gaussian
smoothing for different σ (arcmin). Relative difference between graph
convolution and spherical smoothing: 10.4%, 4.8%, 3.8%.

Furthermore, the harmonic resemblance is another
sign that the constructed graph is able to capture the
spherical structure of the HEALPix sampling. In some
applications, where the exactitude of the convolution is
not a requirement, such as de-noising, graph convolu-
tion could be used instead of using the spherical har-
monics. In a neural network setting, the fact that the
graph convolution is not exactly equivariant to rotation
is probably compensated by the fact that convolution
kernels are learned.

We further leverage this example to present three vi-
sualizations of a convolution kernel. The first visual-
ization (Figure B.14, top) is a plot of the kernel func-
tion, i.e., it shows Kt evaluated at the graph eigenvalues

0.0 0.5 1.0 1.5
Graph eigenvalues

0.00

0.25

0.50

0.75

1.00

Sp
ec

tra
l r

es
po

ns
e t = 5

0.0 0.5 1.0 1.5
Graph eigenvalues

0.00

0.25

0.50

0.75

1.00
t = 20

0.0 0.5 1.0 1.5
Graph eigenvalues

0.00

0.25

0.50

0.75

1.00
t = 50

100 0 100
0

1

2

3

4

5

100 0 100 100 0 100

Figure B.14: Visualization of the convolution kernel Kt(x) = e−τtx.
Top: spectral domain. Middle: gnomonic projection. Bottom: cross-
section along the equator.

diag(Λ). Note that small eigenvalues λ correspond to
small frequencies, i.e., to spectral modes of low vari-
ation. The second visualization (Figure B.14, middle)
shows the kernel localized on the sphere (gnomonic pro-
jection). As the kernel Kt is defined in the graph spectral
domain, it was convolved with a Kronecker δ to obtain
a representation on the sphere (see Section 2.4). The
third visualization (Figure B.14, bottom) plots the sec-
tion of the filter. This visualization might be easier to
read as the filters are isotropic (up to the irregularities
of the sampling). The plot is obtained by convolving a
Kronecker δ on the vertices along the equator. Note that,
because of the small irregularities in the HEALPix sam-
pling, the second and third methods are subject to small
variations depending on the chosen position of the Kro-
necker δ.

Appendix C. Border effects

The graph setting used throughout this contribution
corresponds to assumed reflective border conditions.
While that is irrelevant when working on the complete
sphere (as it has no border), it slightly affects the convo-
lution operation when only a part of the sphere is con-
sidered. As depicted in Figure C.15, a filter localized
near a border (via h(L)δi) is no longer isotropic. These
border effects can, however, be mitigated by padding

18

with zeros a small area around the part of interest (in
which case they become similar to border effects in clas-
sical CNNs). We however do not expect these effects to
cause any problem as long as the data samples cover the
same area.

Figure C.15: Convolution kernel (also called filter) localized in the
center and left corner of a graph built from 1/12th of the sphere at
Nside = 16. A filter h is localized on a pixel i as Tih = h(L)δi (see
Section 2.4, equation (2)). The filter is not isotropic anymore when
localized on the corner as the graph representation of a manifold as-
sumes reflective border conditions.

Appendix D. Projection onto a 2D plane

In order to compare the DeepSphere architecture with
a 2D CNN, we needed to project the spherical maps
onto a plane. A radial projection is computationally
so expensive that, because of data augmentation, it is
significantly more expensive than the actual training of
the NN. Hence, we decided to leverage the geometrical
properties of HEALPix to create another projection. Re-
member that HEALPix models the sphere as 12 pixels
that are then subdivided into 4 recursively. Eventually,
each of these 12 bases resembles a square grid. See Fig-
ure C.15 to visualize it. As our classification problem
involves a twelfth of the sphere at most, we can use this
natural structure to simply assign each HEALPix pixel
to a pixel of a 2D grid of size Nsides × Nsides. This op-
eration is computationally cheap and probably spreads
the projection error relatively evenly across the result-
ing image. This projection has actually been indepen-
dently proposed (while this paper was under review) for
a spherical CNN on HEALPix for cosmology [74].

Appendix E. Augmentation of the dataset for the
SVM classifier

For the trained network to be robust to noise, we
employ the following data augmentation technique: a
random realization of Gaussian noise is added to each
sample before it is fed to the NN. Besides robustness to
noise, the network is less likely to over-fit the training
set as it never sees the same sample twice.

For a fair comparison between DeepSphere and the
baselines, we have to ensure that the SVM classifier
has access to the same amount of training data as Deep-
Sphere. That is potentially an infinite number of sam-
ples. Hence, we fit different classifiers using various
training set sizes until we experimentally observe that
increasing the amount of training data does not improve
performance. An example convergence of the training
and validation errors is shown in Figure E.16.

0 10000 20000 30000 40000 50000 60000
Number of training samples

0.00

0.05

0.10

Er
ro

r r
at

e
in

 %

Training
Validation
Testing

Figure E.16: Error w.r.t. the number of training samples for histogram
features and the linear SVM (setting: order o = 2, relative noise level
1.5). The error clearly converged such that adding more samples will
not improve the classifier. The validation error might be slightly below
the training error as it was used to select the hyper-parameters.

Appendix F. Convergence Mass Maps

In the following we describe the weak lensing map-
making pipeline UFalcon (ultra fast lightcone) devel-
oped in [71] and the way it was used to generate data
for this work. The data consist of two-dimensional mass
maps on the full sphere, which represent the dimen-
sionless, weighted and projected mass along the light of
sight. The matter content of the universe consists mostly
of dark matter. This kind of projected mass maps are
typically measured using the weak gravitational lensing
technique. Gravitational lensing occurs when images of
distant galaxies are distorted by the matter clumps be-
tween the galaxy and the observer, which act as lenses.
Measurements of the small, spatially coherent distor-
tions of galaxy images can be used to infer the matter
density between the observer and the background galax-
ies. [see 70, for a review of gravitational lensing].

In order to obtain a convergence map characterising
the gravitational lensing of distance sources, one has to
start with simulations of the dark matter distribution.
This is achieved through cosmological N-Body simula-
tions, which evolve a chosen number of dark matter par-
ticles Nsim

part within a specific simulation volume Vsim un-
der the influence of gravity across cosmic time-scales.
The simulation outputs the positions of the particles at
user-specific time-steps. These time-steps correspond
to redshifts z, by which the spectrum is shifted the ob-

19

server would measure. A redshift of z = 0 correspond
to the present time and higher redshifts to earlier times.

Since the convergence map characterises the dark
matter lenses at different redshifts, one has to first con-
struct a lightcone. The lightcone represents the volume
of the universe around the observer, where the radius
represents the distance the light from distant galaxies
at different times and locations has to travel to the ob-
server. Therefore, the particles outputted at different
redshifts (time-steps) of the simulation are concentri-
cally arranged in shells of constant redshift around the
observer (each redshift z corresponds to a comoving dis-
tance away from the observer χ(z)), which is located at
redshift z = 0 (see Figure F.17). The shells are then
weighted by a weak lensing specific weight Wb and pro-
jected onto the sphere for each pixel θpix, resulting in a
convergence map

κ(θpix) ∼
∑

b

Wb
Vsim

Nsim
part

np(θpix,∆χb)
D2(zb)

, (F.1)

where np represents the number of particles in a specific
pixel on the shell ∆χb. The convergence map depends
on the cosmological parameters.

Figure F.17: Left: Dark matter density field simulated using L-
PICOLA for specific cosmological parameters. Right: Sketch of the
lightcone constructed by arranging particles at different redshifts in
concentric shells around the observer located at z = 0.

The data generated for the present analysis is based
on the fast approximate N-Body simulation code
L-PICOLA [72]. For our purposes, we chose a simu-
lation volume Vsim = (4200 h−1 Mpc)3, a total number
of particles Nsim

part = 10243 placed on a mesh of size
Nsim

mesh = 20483. The simulation was then performed 30
times with different seeds for each of the two ΛCDM
cosmological models described in section Section 4.1
covering a redshift range from z = 0.1 to z = 0.8. The
L-PICOLA were performed in lightcone mode, where
the simulation output is already arranged as a lightcone.
Here we chose a redshift-shell thickness of ∆z = 0.01.

Bibliography

[1] Planck Collaboration, Planck 2015 results. XIII. Cosmological
parameters, A&A594 (2016) A13.

[2] E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold,
G. Hinshaw, N. Jarosik, D. Larson, M. R. Nolta, L. Page, D. N.
Spergel, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S.
Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack,
E. L. Wright, Seven-year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Cosmological Interpretation,
ApJS192 (2011) 18.

[3] S. Staggs, J. Dunkley, L. Page, Recent discoveries from the cos-
mic microwave background: a review of recent progress, Re-
ports on Progress in Physics 81 (4) (2018) 044901.

[4] M. Santos, P. Bull, D. Alonso, S. Camera, P. Ferreira,
G. Bernardi, R. Maartens, M. Viel, F. Villaescusa-Navarro, F. B.
Abdalla, M. Jarvis, R. B. Metcalf, A. Pourtsidou, L. Wolz,
Cosmology from a SKA HI intensity mapping survey, Advanc-
ing Astrophysics with the Square Kilometre Array (AASKA14)
(2015) 19.

[5] HI4PI Collaboration, N. Ben Bekhti, L. Flöer, R. Keller, J. Kerp,
D. Lenz, B. Winkel, J. Bailin, M. R. Calabretta, L. Dedes, H. A.
Ford, B. K. Gibson, U. Haud, S. Janowiecki, P. M. W. Kalberla,
F. J. Lockman, N. M. McClure-Griffiths, T. Murphy, H. Nakan-
ishi, D. J. Pisano, L. Staveley-Smith, HI4PI: A full-sky H I sur-
vey based on EBHIS and GASS, A&A594 (2016) A116.

[6] S. Alam, M. Ata, S. Bailey, F. Beutler, D. Bizyaev, J. A.
Blazek, A. S. Bolton, J. R. Brownstein, A. Burden, C.-H.
Chuang, J. Comparat, A. J. Cuesta, K. S. Dawson, D. J.
Eisenstein, S. Escoffier, H. Gil-Marín, J. N. Grieb, N. Hand,
S. Ho, K. Kinemuchi, D. Kirkby, F. Kitaura, E. Malanushenko,
V. Malanushenko, C. Maraston, C. K. McBride, R. C. Nichol,
M. D. Olmstead, D. Oravetz, N. Padmanabhan, N. Palanque-
Delabrouille, K. Pan, M. Pellejero-Ibanez, W. J. Percival,
P. Petitjean, F. Prada, A. M. Price-Whelan, B. A. Reid,
S. A. Rodríguez-Torres, N. A. Roe, A. J. Ross, N. P. Ross,
G. Rossi, J. A. Rubiño-Martín, S. Saito, S. Salazar-Albornoz,
L. Samushia, A. G. Sánchez, S. Satpathy, D. J. Schlegel, D. P.
Schneider, C. G. Scóccola, H.-J. Seo, E. S. Sheldon, A. Sim-
mons, A. Slosar, M. A. Strauss, M. E. C. Swanson, D. Thomas,
J. L. Tinker, R. Tojeiro, M. V. Magaña, J. A. Vazquez, L. Verde,
D. A. Wake, Y. Wang, D. H. Weinberg, M. White, W. M. Wood-
Vasey, C. Yèche, I. Zehavi, Z. Zhai, G.-B. Zhao, The clustering
of galaxies in the completed SDSS-III Baryon Oscillation Spec-
troscopic Survey: cosmological analysis of the DR12 galaxy
sample, MNRAS470 (2017) 2617–2652.

[7] M. A. Troxel, N. MacCrann, J. Zuntz, T. F. Eifler, E. Krause,
S. Dodelson, D. Gruen, J. Blazek, O. Friedrich, S. Samuroff,
J. Prat, L. F. Secco, C. Davis, A. Ferté, J. DeRose, A. Alarcon,
A. Amara, E. Baxter, M. R. Becker, G. M. Bernstein, S. L. Bri-
dle, R. Cawthon, C. Chang, A. Choi, J. De Vicente, A. Drlica-
Wagner, J. Elvin-Poole, J. Frieman, M. Gatti, W. G. Hart-
ley, K. Honscheid, B. Hoyle, E. M. Huff, D. Huterer, B. Jain,
M. Jarvis, T. Kacprzak, D. Kirk, N. Kokron, C. Krawiec, O. La-
hav, A. R. Liddle, J. Peacock, M. M. Rau, A. Refregier, R. P.
Rollins, E. Rozo, E. S. Rykoff, C. Sánchez, I. Sevilla-Noarbe,
E. Sheldon, A. Stebbins, T. N. Varga, P. Vielzeuf, M. Wang,
R. H. Wechsler, B. Yanny, T. M. C. Abbott, F. B. Abdalla, S. Al-
lam, J. Annis, K. Bechtol, A. Benoit-Lévy, E. Bertin, D. Brooks,
E. Buckley-Geer, D. L. Burke, A. Carnero Rosell, M. Carrasco
Kind, J. Carretero, F. J. Castander, M. Crocce, C. E. Cunha,
C. B. D’Andrea, L. N. da Costa, D. L. DePoy, S. Desai, H. T.
Diehl, J. P. Dietrich, P. Doel, E. Fernandez, B. Flaugher, P. Fos-
alba, J. García-Bellido, E. Gaztanaga, D. W. Gerdes, T. Gi-
annantonio, D. A. Goldstein, R. A. Gruendl, J. Gschwend,

20

G. Gutierrez, D. J. James, T. Jeltema, M. W. G. Johnson, M. D.
Johnson, S. Kent, K. Kuehn, S. Kuhlmann, N. Kuropatkin, T. S.
Li, M. Lima, H. Lin, M. A. G. Maia, M. March, J. L. Marshall,
P. Martini, P. Melchior, F. Menanteau, R. Miquel, J. J. Mohr,
E. Neilsen, R. C. Nichol, B. Nord, D. Petravick, A. A. Plazas,
A. K. Romer, A. Roodman, M. Sako, E. Sanchez, V. Scarpine,
R. Schindler, M. Schubnell, M. Smith, R. C. Smith, M. Soares-
Santos, F. Sobreira, E. Suchyta, M. E. C. Swanson, G. Tarle,
D. Thomas, D. L. Tucker, V. Vikram, A. R. Walker, J. Weller,
Y. Zhang, Dark Energy Survey Year 1 Results: Cosmological
Constraints from Cosmic Shear, arxiv:1708.01538.

[8] H. Hildebrandt, M. Viola, C. Heymans, S. Joudaki, K. Kui-
jken, C. Blake, T. Erben, B. Joachimi, D. Klaes, L. Miller,
C. B. Morrison, R. Nakajima, G. Verdoes Kleijn, A. Amon,
A. Choi, G. Covone, J. T. A. de Jong, A. Dvornik, I. Fenech
Conti, A. Grado, J. Harnois-Déraps, R. Herbonnet, H. Hoekstra,
F. Köhlinger, J. McFarland, A. Mead, J. Merten, N. Napoli-
tano, J. A. Peacock, M. Radovich, P. Schneider, P. Simon,
E. A. Valentijn, J. L. van den Busch, E. van Uitert, L. Van
Waerbeke, KiDS-450: cosmological parameter constraints from
tomographic weak gravitational lensing, MNRAS465 (2017)
1454–1498.

[9] J. Schmelzle, A. Lucchi, T. Kacprzak, A. Amara, R. Sgier,
A. Réfrégier, T. Hofmann, Cosmological model discrimination
with Deep Learning, arxiv:1707.05167.

[10] L. Lucie-Smith, H. V. Peiris, A. Pontzen, M. Lochner, Machine
learning cosmological structure formation, MNRAS479 (2018)
3405–3414.

[11] A. Gupta, J. M. Z. Matilla, D. Hsu, Z. Haiman, Non-
Gaussian information from weak lensing data via deep learning,
Phys. Rev. D97 (10) (2018) 103515.

[12] N. Gillet, A. Mesinger, B. Greig, A. Liu, G. Ucci, Deep learning
from 21-cm images of the Cosmic Dawn, arxiv:1805.02699.

[13] S. Hassan, A. Liu, S. Kohn, J. E. Aguirre, P. La Plante, A. Lidz,
Reionization Models Classifier using 21cm Map Deep Learning,
in: V. Jelić, T. van der Hulst (Eds.), IAU Symposium, Vol. 333
of IAU Symposium, 2018, pp. 47–51.

[14] M. A. Aragon-Calvo, Classifying the Large Scale Structure of
the Universe with Deep Neural Networks, arXiv:1804.00816.

[15] R. Ciuca, O. F. Hernández, M. Wolman, A Convolutional Neu-
ral Network For Cosmic String Detection in CMB Temperature
Maps, arxiv:1708.08878.

[16] S. Ravanbakhsh, J. Oliva, S. Fromenteau, L. C. Price, S. Ho,
J. Schneider, B. Póczos, Estimating cosmological parameters
from the dark matter distribution, in: Proceedings of the 33rd
International Conference on International Conference on Ma-
chine Learning - Volume 48, ICML’16, JMLR.org, 2016, pp.
2407–2416.

[17] Planck Collaboration, Planck 2015 results. I. Overview of prod-
ucts and scientific results, A&A594 (2016) A1.

[18] B. Abolfathi, D. S. Aguado, G. Aguilar, C. Allende Prieto,
A. Almeida, T. T. Ananna, F. Anders, S. F. Anderson, B. H. An-
drews, B. Anguiano, et al., The Fourteenth Data Release of the
Sloan Digital Sky Survey: First Spectroscopic Data from the Ex-
tended Baryon Oscillation Spectroscopic Survey and from the
Second Phase of the Apache Point Observatory Galactic Evolu-
tion Experiment, ApJS235 (2018) 42.

[19] Dark Energy Survey Collaboration, The Dark Energy Survey
Data Release 1, arxiv: 1801.03181.

[20] W. Boomsma, J. Frellsen, Spherical convolutions and their ap-
plication in molecular modelling, in: Advances in Neural Infor-
mation Processing Systems, 2017, pp. 3436–3446.

[21] Y.-C. Su, K. Grauman, Learning spherical convolution for fast
features from 360 imagery, in: Advances in Neural Information
Processing Systems, 2017, pp. 529–539.

[22] B. Coors, A. P. Condurache, A. Geiger, Spherenet: Learning
spherical representations for detection and classification in om-
nidirectional images, in: European Conference on Computer Vi-
sion, 2018.

[23] J. Fluri, T. Kacprzak, A. Lucchi, A. Refregier, A. Amara, T. Hof-
mann, Cosmological constraints from noisy convergence maps
through deep learning, arxiv:1807.08732.

[24] T. S. Cohen, M. Geiger, J. Koehler, M. Welling, Spherical cnns,
arXiv:1801.10130.

[25] C. Esteves, C. Allen-Blanchette, A. Makadia, K. Daniilidis,
Learning so(3) equivariant representations with spherical cnns,
arXiv:1711.06721.

[26] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional
neural networks on graphs with fast localized spectral filtering,
in: Advances in Neural Information Processing Systems, 2016,
pp. 3844–3852.

[27] K. M. Gorski, E. Hivon, A. Banday, B. D. Wandelt, F. K.
Hansen, M. Reinecke, M. Bartelmann, Healpix: a framework
for high-resolution discretization and fast analysis of data dis-
tributed on the sphere, The Astrophysical Journal 622 (2) (2005)
759.

[28] C. Chang, A. Pujol, B. Mawdsley, D. Bacon, J. Elvin-Poole,
P. Melchior, A. Kovács, B. Jain, B. Leistedt, T. Giannantonio,
A. Alarcon, E. Baxter, K. Bechtol, M. R. Becker, A. Benoit-
Lévy, G. M. Bernstein, C. Bonnett, M. T. Busha, A. C. Rosell,
F. J. Castander, R. Cawthon, L. N. da Costa, C. Davis, J. De
Vicente, J. DeRose, A. Drlica-Wagner, P. Fosalba, M. Gatti,
E. Gaztanaga, D. Gruen, J. Gschwend, W. G. Hartley, B. Hoyle,
E. M. Huff, M. Jarvis, N. Jeffrey, T. Kacprzak, H. Lin, N. Mac-
Crann, M. A. G. Maia, R. L. C. Ogando, J. Prat, M. M. Rau,
R. P. Rollins, A. Roodman, E. Rozo, E. S. Rykoff, S. Samuroff,
C. Sánchez, I. Sevilla-Noarbe, E. Sheldon, M. A. Troxel,
T. N. Varga, P. Vielzeuf, V. Vikram, R. H. Wechsler, J. Zuntz,
T. M. C. Abbott, F. B. Abdalla, S. Allam, J. Annis, E. Bertin,
D. Brooks, E. Buckley-Geer, D. L. Burke, M. C. Kind, J. Car-
retero, M. Crocce, C. E. Cunha, C. B. D’Andrea, S. Desai, H. T.
Diehl, J. P. Dietrich, P. Doel, J. Estrada, A. F. Neto, E. Fernan-
dez, B. Flaugher, J. Frieman, J. García-Bellido, R. A. Gruendl,
G. Gutierrez, K. Honscheid, D. J. James, T. Jeltema, M. W. G.
Johnson, M. D. Johnson, S. Kent, D. Kirk, E. Krause, K. Kuehn,
S. Kuhlmann, O. Lahav, T. S. Li, M. Lima, M. March, P. Martini,
F. Menanteau, R. Miquel, J. J. Mohr, E. Neilsen, R. C. Nichol,
D. Petravick, A. A. Plazas, A. K. Romer, M. Sako, E. Sanchez,
V. Scarpine, M. Schubnell, M. Smith, R. C. Smith, M. Soares-
Santos, F. Sobreira, E. Suchyta, G. Tarle, D. Thomas, D. L.
Tucker, A. R. Walker, W. Wester, Y. Zhang, Dark Energy Survey
Year 1 results: curved-sky weak lensing mass map, MNRAS475
(2018) 3165–3190.

[29] M. Bartelmann, P. Schneider, Weak gravitational lensing,
Phys. Rep.340 (2001) 291–472. arXiv:astro-ph/9912508,
doi:10.1016/S0370-1573(00)00082-X.

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on
heterogeneous systems, software available from tensorflow.org
(2015).
URL https://www.tensorflow.org/

[31] M. Defferrard, L. Martin, R. Pena, N. Perraudin, Pygsp: Graph
signal processing in python. doi:10.5281/zenodo.1003157.
URL https://github.com/epfl-lts2/pygsp/

21

http://arxiv.org/abs/astro-ph/9912508
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/epfl-lts2/pygsp/
https://github.com/epfl-lts2/pygsp/
http://dx.doi.org/10.5281/zenodo.1003157
https://github.com/epfl-lts2/pygsp/

[32] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based
learning applied to document recognition, Proceedings of the
IEEE 86 (11) (1998) 2278–2324.

[33] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep
network training by reducing internal covariate shift, in: Inter-
national Conference on Machine Learning, 2015, pp. 448–456.

[34] M. Belkin, P. Niyogi, Convergence of laplacian eigenmaps, in:
Advances in Neural Information Processing Systems, 2007, pp.
129–136.

[35] P. Frossard, R. Khasanova, Graph-based classification of omni-
directional images, in: 2017 IEEE International Conference on
Computer Vision Workshops (ICCVW), 2017, pp. 860–869.

[36] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Van-
dergheynst, The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other
irregular domains, IEEE Signal Processing Magazine 30 (3)
(2013) 83–98.

[37] N. Perraudin, P. Vandergheynst, Stationary signal processing on
graphs., IEEE Trans. Signal Processing 65 (13) (2017) 3462–
3477.

[38] L. Le Magoarou, R. Gribonval, N. Tremblay, approximate fast
graph fourier transforms via multi-layer sparse approximations,
IEEE transactions on Signal and Information Processing over
Networks 4 (2) (2018) 407–420.

[39] M. Reinecke, D. S. Seljebotn, Libsharp–spherical harmonic
transforms revisited, Astronomy & Astrophysics 554 (2013)
A112.

[40] K. T. Inoue, P. Cabella, E. Komatsu, Harmonic inpainting of
the cosmic microwave background sky: Formulation and error
estimate, Phys. Rev. D77 (12) (2008) 123539.

[41] S. Amsel, J. Berger, R. H. Brandenberger, Detecting cosmic
strings in the CMB with the Canny algorithm, J. Cosmology
Astropart. Phys.4 (2008) 015.

[42] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks
for semantic segmentation, in: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2015, pp.
3431–3440.

[43] M. Lin, Q. Chen, S. Yan, Network in network, arXiv:1312.4400.
[44] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller,

Striving for simplicity: The all convolutional net, arXiv preprint
arXiv:1412.6806.

[45] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, R. P. Adams, Convolutional net-
works on graphs for learning molecular fingerprints, in: Ad-
vances in neural information processing systems, 2015, pp.
2224–2232.

[46] Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph se-
quence neural networks, in: International Conference on Learn-
ing Representation, 2016.

[47] C. Ronchi, R. Iacono, P. S. Paolucci, The “cubed sphere”: a
new method for the solution of partial differential equations in
spherical geometry, Journal of Computational Physics 124 (1)
(1996) 93–114.

[48] J. Xiao, K. A. Ehinger, A. Oliva, A. Torralba, Recognizing scene
viewpoint using panoramic place representation, in: Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, IEEE, 2012, pp. 2695–2702.

[49] Y. Zhang, S. Song, P. Tan, J. Xiao, Panocontext: A whole-room
3d context model for panoramic scene understanding, in: Euro-
pean Conference on Computer Vision, Springer, 2014, pp. 668–
686.

[50] J. Masci, D. Boscaini, M. Bronstein, P. Vandergheynst,
Geodesic convolutional neural networks on riemannian mani-
folds, in: Proceedings of the IEEE international conference on
computer vision workshops, 2015, pp. 37–45.

[51] D. Boscaini, J. Masci, E. Rodolà, M. Bronstein, Learning shape
correspondence with anisotropic convolutional neural networks,
in: Advances in Neural Information Processing Systems, 2016,
pp. 3189–3197.

[52] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, M. M.
Bronstein, Geometric deep learning on graphs and manifolds
using mixture model cnns, in: Proc. CVPR, Vol. 1, 2017, p. 3.

[53] M. J. Mohlenkamp, A fast transform for spherical harmonics,
Journal of Fourier analysis and applications 5 (2-3) (1999) 159–
184.

[54] V. Rokhlin, M. Tygert, Fast algorithms for spherical harmonic
expansions, SIAM Journal on Scientific Computing 27 (6)
(2006) 1903–1928.

[55] R. Kondor, Z. Lin, S. Trivedi, Clebsch-gordan nets: a
fully fourier space spherical convolutional neural network,
arXiv:1806.09231.

[56] R. Kondor, S. Trivedi, On the generalization of equivariance and
convolution in neural networks to the action of compact groups,
arXiv:1802.03690.

[57] S. Mallat, Group invariant scattering, Communications on Pure
and Applied Mathematics 65 (10) (2012) 1331–1398.

[58] N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional
neural network for modelling sentences, in: Proceedings of the
52nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), Vol. 1, 2014, pp. 655–665.

[59] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Van-
dergheynst, Geometric deep learning: going beyond euclidean
data, IEEE Signal Processing Magazine 34 (4) (2017) 18–42.

[60] W. L. Hamilton, R. Ying, J. Leskovec, Representation learning
on graphs: Methods and applications, IEEE Data Engineering
Bulletin, arXiv:1709.05584.

[61] S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee,
B. Glocker, D. Rueckert, Metric learning with spectral graph
convolutions on brain connectivity networks, NeuroImage 169
(2018) 431–442.

[62] S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. G. Moreno,
B. Glocker, D. Rueckert, Spectral graph convolutions for
population-based disease prediction, in: International Confer-
ence on Medical Image Computing and Computer-Assisted In-
tervention, Springer, 2017, pp. 177–185.

[63] P. Hop, B. Allgood, J. Yu, Geometric deep learning au-
tonomously learns chemical features that outperform those en-
gineered by domain experts, Molecular pharmaceutics.

[64] X. Qi, R. Liao, J. Jia, S. Fidler, R. Urtasun, 3d graph neural
networks for rgbd semantic segmentation, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 5199–5208.

[65] P. Baqué, E. Remelli, F. Fleuret, P. Fua, Geodesic convolutional
shape optimization, in: International Conference on Machine
Learning, 2018.

[66] Y. Seo, M. Defferrard, P. Vandergheynst, X. Bresson, Struc-
tured sequence modeling with graph convolutional recurrent
networks, arXiv:1612.07659.

[67] Y. Li, R. Yu, C. Shahabi, Y. Liu, Diffusion convolutional recur-
rent neural network: Data-driven traffic forecasting.

[68] F. Monti, M. Bronstein, X. Bresson, Geometric matrix comple-
tion with recurrent multi-graph neural networks, in: Advances in
Neural Information Processing Systems, 2017, pp. 3697–3707.

[69] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. San-
toro, R. Faulkner, et al., Relational inductive biases, deep learn-
ing, and graph networks, arXiv:1806.01261.

[70] M. Bartelmann, Gravitational lensing, Classical and Quantum
Gravity 27 (23) (2010) 233001.

[71] R. Sgier, A. Réfrégier, A. Amara, A. Nicola, Fast Generation of

22

Covariance Matrices for Weak Lensing, arxiv:1801.05745.
[72] C. Howlett, M. Manera, W. J. Percival, L-PICOLA: A parallel

code for fast dark matter simulation, Astronomy and Computing
12 (2015) 109–126.

[73] K. Patton, J. Blazek, K. Honscheid, E. Huff, P. Melchior, A. J.
Ross, E. Suchyta, Cosmological constraints from the conver-
gence 1-point probability distribution, MNRAS472 (2017) 439–
446.

[74] N. Krachmalnicoff, M. Tomasi, Convolutional neural networks
on the healpix sphere: a pixel-based algorithm and its applica-
tion to cmb data analysis, arXiv preprint arXiv:1902.04083.

[75] S. He, S. Ravanbakhsh, S. Ho, Analysis of cosmic microwave
background with deep learning.

[76] D. P. Kingma, J. Ba, Adam: A method for stochastic optimiza-
tion, arXiv:1412.6980.

[77] X. Glorot, Y. Bengio, Understanding the difficulty of train-
ing deep feedforward neural networks, in: Proceedings of the
thirteenth international conference on artificial intelligence and
statistics, 2010, pp. 249–256.

[78] D. Ribli, B. Ármin Pataki, I. Csabai, Learning from deep learn-
ing: better cosmological parameter inference from weak lensing
maps, arxiv:1806.05995.

[79] N. Perraudin, B. Ricaud, D. I. Shuman, P. Vandergheynst,
Global and local uncertainty principles for signals on graphs,
APSIPA Transactions on Signal and Information Processing 7.

23

	Introduction
	Method
	HEALPix sampling
	Graph construction
	Graph Fourier basis
	Convolution on graphs
	Efficient convolutions
	Coarsening and Pooling
	Layers
	Network architectures
	Training

	Related work
	2D convolutional neural networks
	Spherical neural networks
	Graph neural networks

	Experiments
	Data
	Problem formulation
	Baselines
	Network architecture and hyper-parameters
	Results
	Filter visualization

	Conclusion
	Graph Fourier modes and spherical harmonics
	Example: heat diffusion
	Border effects
	Projection onto a 2D plane
	Augmentation of the dataset for the SVM classifier
	Convergence Mass Maps

